Statistical Relational Learning with Formal Ontologies

  • Achim Rettinger
  • Matthias Nickles
  • Volker Tresp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5782)

Abstract

We propose a learning approach for integrating formal knowledge into statistical inference by exploiting ontologies as a semantically rich and fully formal representation of prior knowledge. The logical constraints deduced from ontologies can be utilized to enhance and control the learning task by enforcing description logic satisfiability in a latent multi-relational graphical model. To demonstrate the feasibility of our approach we provide experiments using real world social network data in form of a \(\mathcal{SHOIN}(D)\) ontology. The results illustrate two main practical advancements: First, entities and entity relationships can be analyzed via the latent model structure. Second, enforcing the ontological constraints guarantees that the learned model does not predict inconsistent relations. In our experiments, this leads to an improved predictive performance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horrocks, I., Patel-Schneider, P.F.: Reducing owl entailment to description logic satisfiability. Journal of Web Semantics, 17–29 (2003)Google Scholar
  2. 2.
    Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. The MIT Press, Cambridge (2007)MATHGoogle Scholar
  3. 3.
    Xu, Z., Tresp, V., Yu, K., Kriegel, H.P.: Infinite hidden relational models. In: Proceedings of the 22nd International Conference on Uncertainity in Artificial Intelligence, UAI 2006 (2006)Google Scholar
  4. 4.
    Kemp, C., Tenenbaum, J.B., Griffiths, T.L., Yamada, T., Ueda, N.: Learning systems of concepts with an infinite relational model. In: Proc. 21st Conference on Artificial Intelligence (2006)Google Scholar
  5. 5.
    Ishwaran, H., James, L.: Gibbs sampling methods for stick breaking priors. Journal of the American Statistical Association 96(453), 161–173 (2001)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Lisi, F.A., Esposito, F.: On Ontologies as Prior Conceptual Knowledge in Inductive Logic Programming. In: ECML PKDD 2008 Workshop: Prior Conceptual Knowledge in Machine Learning and Knowledge Discovery PriCKL 2007 (2007)Google Scholar
  7. 7.
    Raedt, L.D., Kersting, K.: Probabilistic logic learning. SIGKDD Explor. Newsl. 5(1), 31–48 (2003)CrossRefGoogle Scholar
  8. 8.
    Carbonetto, P., Kisynski, J., de Freitas, N., Poole, D.: Nonparametric bayesian logic. In: Proc. 21st UAI (2005)Google Scholar
  9. 9.
    Reckow, S., Tresp, V.: Integrating Ontological Prior Knowledge into Relational Learning. In: NIPS 2008 Workshop: Structured Input - Structured Output (2008)Google Scholar
  10. 10.
    Richardson, M., Domingos, P.: Markov logic networks. Journal of Machine Learning Research 62, 107–136 (2006)CrossRefGoogle Scholar
  11. 11.
    Kiefer, C., Bernstein, A., Locher, A.: Adding Data Mining Support to SPARQL via Statistical Relational Learning Methods. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 478–492. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Fanizzi, N., d’Amato, C., Esposito, F.: Induction of classifiers through non-parametric methods for approximate classification and retrieval with ontologies. International Journal of Semantic Computing 2(3), 403–423 (2008)MATHCrossRefGoogle Scholar
  13. 13.
    Fanizzi, N., D’Amato, C., Esposito, F.: A multi-relational hierarchical clustering method for datalog knowledge bases. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 137–142. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Xu, Z., Tresp, V., Rettinger, A., Kersting, K.: Social network mining with nonparametric relational models. In: Advances in Social Network Mining and Analysis - the Second SNA-KDD Workshop at KDD 2008 (2008)Google Scholar
  15. 15.
    Davidson, I., Ravi, S.S.: The complexity of non-hierarchical clustering with instance and cluster level constraints. Data Min. Knowl. Discov. 14(1), 25–61 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Achim Rettinger
    • 1
  • Matthias Nickles
    • 2
  • Volker Tresp
    • 3
  1. 1.Technische Universität MünchenGermany
  2. 2.University of BathUnited Kingdom
  3. 3.Siemens AG, CT, IC, Learning SystemsGermany

Personalised recommendations