Dependency Tree Kernels for Relation Extraction from Natural Language Text

  • Frank Reichartz
  • Hannes Korte
  • Gerhard Paass
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5782)

Abstract

The automatic extraction of relations from unstructured natural text is challenging but offers practical solutions for many problems like automatic text understanding and semantic retrieval. Relation extraction can be formulated as a classification problem using support vector machines and kernels for structured data that may include parse trees to account for syntactic structure. In this paper we present new tree kernels over dependency parse trees automatically generated from natural language text. Experiments on a public benchmark data set show that our kernels with richer structural features significantly outperform all published approaches for kernel-based relation extraction from dependency trees. In addition we optimize kernel computations to improve the actual runtime compared to previous solutions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blohm, S., Cimiano, P.: Scaling up pattern induction for web relation extraction through frequent itemset mining. In: Proc. KI 2008 WS on Ontology-Based IE Systems (2008)Google Scholar
  2. 2.
    Bunescu, R.C., Mooney, R.J.: A shortest path dependency kernel for relation extraction. In: Proc. EMNLP 2005 (2005)Google Scholar
  3. 3.
    Bunescu, R.C., Mooney, R.J.: Subsequence kernels for relation extraction. In: Proc. Neural Information Processing Systems, NIPS 2005 (2005)Google Scholar
  4. 4.
    Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. In: Proc. ACL 2004 (2004)Google Scholar
  5. 5.
    Harabagiu, S., Bejan, C.A., Morarescu, P.: Shallow semantics for relation extraction. In: Proc. IJCAI 2005 (2005)Google Scholar
  6. 6.
    Hearst, M.: Automatic acquisition of hyponyms from large text corpora. In: Proc. COLING 1992 (1992)Google Scholar
  7. 7.
    Horvath, T., Paass, G., Reichartz, F., Wrobel, S.: A logic-based approach to relation extraction from texts. In: ILP 2009 (2009)Google Scholar
  8. 8.
    Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Joachims, T.: Making large-scale SVM learning practical. In: Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1999)Google Scholar
  10. 10.
    Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proc. ACL 2003 (2003)Google Scholar
  11. 11.
    Klein, D., Manning, C.D.: Corpus-based induction of syntactic structure: Models of dependency and constituency. In: Proc. ACL 2004 (2004)Google Scholar
  12. 12.
    Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification using string kernels. JMLR (2), 419–444 (2002)Google Scholar
  13. 13.
    Mitchell, A.: ACE-2 Version 1.0; corpus LDC2003T11. Linguistic Data Consortium, Philadelphia (2003), http://www.ldc.upenn.edu
  14. 14.
    Moschitti, A.: Efficient convolution kernels for dependency and constituent syntactic trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Paaß, G., Reichartz, F.: Exploiting semantic constraints for estimating supersenses with crfs. In: Proc. SDM 2009 (2009)Google Scholar
  16. 16.
    Reichartz, F., Korte, H., Paass, G.: Composite kernels for relation extraction. In: Proc. ACL 2009 (2009)Google Scholar
  17. 17.
    Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)Google Scholar
  18. 18.
    Tjong, E.F., Sang, K., De Meulder, F.: Language-independent named entity recognition. CoRR cs.CL/0306050 (2003)Google Scholar
  19. 19.
    Yang, Y.: An evaluation of statistical approaches to text categorization. Information Retrieval 1(1-2), 69–90 (1999)CrossRefGoogle Scholar
  20. 20.
    Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction. J. Mach. Learn. Res. 3, 1083–1106 (2003)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Frank Reichartz
    • 1
  • Hannes Korte
    • 1
  • Gerhard Paass
    • 1
  1. 1.Fraunhofer IAIS, Schloss BirlinghovenSt. AugustinGermany

Personalised recommendations