Advertisement

Efficient Decoding of Ternary Error-Correcting Output Codes for Multiclass Classification

  • Sang-Hyeun Park
  • Johannes Fürnkranz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5782)

Abstract

We present an adaptive decoding algorithm for ternary ECOC matrices which reduces the number of needed classifier evaluations for multiclass classification. The resulting predictions are guaranteed to be equivalent with the original decoding strategy except for ambiguous final predictions. The technique works for Hamming Decoding and several commonly used alternative decoding strategies. We show its effectiveness in an extensive empirical evaluation considering various code design types: Nearly in all cases, a considerable reduction is possible. We also show that the performance gain depends on the sparsity and the dimension of the ECOC coding matrix.

References

  1. 1.
    Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying approach for margin classifiers. Journal of Machine Learning Research 1, 113–141 (2000)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Asuncion, A., Newman, D.: UCI machine learning repository (2007)Google Scholar
  3. 3.
    Bose, R.C., Ray-Chaudhuri, D.K.: On a class of error correcting binary group codes. Information and Control 3(1), 68–79 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cardoso, J.S., da Costa, J.F.P.: Learning to classify ordinal data: The data replication method. Journal of Machine Learning Research 8, 1393–1429 (2007)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Crammer, K., Singer, Y.: On the learnability and design of output codes for multiclass problems. Machine Learning 47(2-3), 201–233 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research 2, 263–286 (1995)zbMATHGoogle Scholar
  7. 7.
    Escalera, S., Pujol, O., Radeva, P.: Decoding of ternary error correcting output codes. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 753–763. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Friedman, J.H.: Another approach to polychotomous classification. Technical report, Department of Statistics, Stanford University, Stanford, CA (1996)Google Scholar
  9. 9.
    Fürnkranz, J.: Round robin classification. Journal of Machine Learning Research 2, 721–747 (2002)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise preferences. Artificial Intelligence 172, 1897–1916 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Macwilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland Mathematical Library. North Holland, Amsterdam (1983)zbMATHGoogle Scholar
  12. 12.
    Park, S.-H., Fürnkranz, J.: Efficient pairwise classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 658–665. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Park, S.-H., Fürnkranz, J.: Efficient decoding of ternary error-correcting output codes for multiclass classification. Technical Report TUD-KE-2009-01, TU Darmstadt, Knowledge Engineering Group (2009)Google Scholar
  14. 14.
    Pimenta, E., Gama, J., de Leon Ferreira de Carvalho, A.C.P.: The dimension of ECOCs for multiclass classification problems. International Journal on Artificial Intelligence Tools 17(3), 433–447 (2008)CrossRefGoogle Scholar
  15. 15.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  16. 16.
    Wu, T.-F., Lin, C.-J., Weng, R.C.: Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research 5, 975–1005 (2004)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sang-Hyeun Park
    • 1
  • Johannes Fürnkranz
    • 1
  1. 1.TU Darmstadt, Knowledge Engineering GroupDarmstadtGermany

Personalised recommendations