Formal Verification for Components and Connectors

  • Christel Baier
  • Tobias Blechmann
  • Joachim Klein
  • Sascha Klüppelholz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5751)


In previous work, constraint automata have been introduced as a uniform model for behavioral interfaces of components, (possibly dynamic) component connectors and systems consisting of several components and their glue code. The purpose of the paper is to provide an overview of the techniques for specifying and verifying temporal requirements, conditions on the data flow at the I/O-ports of components and alternating-time properties that have been designed for constraint automata. The paper presents the syntax and semantics of the logics, sketches the model checking algorithms, summarizes the main features of the implementation within the tool Vereofy and reports on experimental studies.


Model Check Temporal Logic Linear Temporal Logic Atomic Proposition Railway Track 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Henzinger, T.: Reactive Modules. Formal Methods in System Design: An Intern. J. 15(1), 7–48 (1999)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T., Kupferman, O.: Alternating-Time Temporal Logic. JACM 49, 672–713 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arbab, F.: Reo: A Channel-Based Coordination Model for Component Composition. Mathematical Structures in Comp. Sci. 14(3), 329–366 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: A Uniform Framework for Modeling and Verifying Components and Connectors. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 247–267. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  6. 6.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling Component Connectors in Reo by Constraint Automata. Science of Computer Programming (2006)Google Scholar
  7. 7.
    Blechmann, T., Baier, C.: Checking equivalence for Reo networks. In: FACS 2007. ENTCS, vol. 215, pp. 209–226 (2008)Google Scholar
  8. 8.
    Browne, M., Clarke, E., Grumberg, O.: Characterizing Finite Kripke Structures in Propositional Temporal Logic. In: TAPSOFT, TCS (1988)Google Scholar
  9. 9.
    Clarke, E., Emerson, E., Sistla, A.: Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on Programm. Languages and Systems 8(2), 244–263 (1986)CrossRefzbMATHGoogle Scholar
  10. 10.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. In: ACM TOPLAS (1986)Google Scholar
  11. 11.
    Giordano, L., Martelli, A.: Tableau-based automata construction for dynamic linear time temporal logic. Annals of Mathematics and Artificial Intelligence 46(3), 289–315 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Henriksen, J.G., Thiagarajan, P.S.: Dynamic linear time temporal logic. Ann. Pure Appl. Logic 96(1-3), 187–207 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jaghoori, M.M.: Coordinating object oriented components using data-flow networks. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 280–311. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Kanellakis, P., Smolka, S.: CCS Expressions, Finite State Processes, and Three Problems of Equivalence. Information and Computation 86(1), 43–68 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Klüppelholz, S., Baier, C.: Symbolic Model Checking for Channel-based Component Connectors. Science of Computer Programming (2009)Google Scholar
  16. 16.
    Klüppelholz, S., Baier, C.: Alternating-time stream logic for multi-agent systems. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 184–198. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Pnueli, A.: The Temporal Logic of Programs. In: Proc. of 18th FOCS, pp. 46–57. IEEE Computer Society Press, Los Alamitos (1977)Google Scholar
  18. 18.
    Reo website at CWI Amsterdam,
  19. 19.
    Vardi, M.: An Automata-Theoretic Approach to Linear Temporal Logic. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  20. 20.
    Vardi, M., Wolper, P.: An Automata-Theoretic Approach to Automatic Program Verification. In: LICS, pp. 332–345. IEEE Computer Society Press, Los Alamitos (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christel Baier
    • 1
  • Tobias Blechmann
    • 1
  • Joachim Klein
    • 1
  • Sascha Klüppelholz
    • 1
  1. 1.Faculty of Computer ScienceTechnische Universität DresdenGermany

Personalised recommendations