On the Exact Success Rate of Side Channel Analysis in the Gaussian Model

  • Matthieu Rivain
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5381)

Abstract

Nowadays, Side Channel Analysis is one of the most powerful cryptanalytic technique against cryptosystems embedded in portable devices such as smart cards. Faced with this threat, it is of crucial importance to precisely determine what is achievable by a given side channel adversary against a cryptosystem producing a given side channel leakage. This can be answered by evaluating the success rate of an attack according to the adversary capacities and to the leakage properties.

In this paper, we investigate the issue of evaluating the success rate of side channel analysis in the widely admitted Gaussian leakage model. We introduce a new approach that allows us to efficiently compute the success rate of an attack in this model and we apply it to the two main families of side channel analysis: differential side channel analysis and profiling side channel analysis.

References

  1. 1.
    Akkar, M.-L., Bévan, R., Dischamp, P., Moyart, D.: Power analysis, what is now possible.. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 489–502. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 1–14. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bévan, R., Knudsen, E.W.: Ways to enhance differential power analysis. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 327–342. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Brier, É., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Cachin, C.: Entropy Measures and Unconditional Security in Cryptography. PhD thesis (1997)Google Scholar
  6. 6.
    Chari, S., Rao, J., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence of hardware countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 252–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Genz, A.: Numerical Computation of Multivariate Normal Probabilities. Journal of Computational and Graphical Statistics 1, 141–149 (1992)Google Scholar
  10. 10.
    Genz, A.: Comparison of Methods for the Computation of Multivariate Normal Probabilities. Computing Science and Statistics 25, 400–405 (1993)Google Scholar
  11. 11.
    Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. Stochastic methods. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Lemke-Rust, K., Paar, C.: Gaussian mixture models for higher-order side channel analysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 14–27. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks – Revealing the Secrets of Smartcards. Springer, Heidelberg (2007)MATHGoogle Scholar
  16. 16.
    Mangard, S.: Hardware countermeasures against DPA – A statistical analysis of their effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 222–235. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Massey, J.: Guessing and Entropy. IEEE ISIT, 204 (1994)Google Scholar
  18. 18.
    Messerges, T., Dabbish, E., Sloan, R.: Investigations of Power Analysis Attacks on Smartcards. In: The USENIX Workshop on Smartcard Technology (Smartcard 1999), pp. 151–161 (1999)Google Scholar
  19. 19.
    Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to compare and combine power and electromagnetic information leakages. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks. Cryptology ePrint Archive, Report 2006/139 (2006), http://eprint.iacr.org/
  22. 22.
    Standaert, F.-X., Peeters, E., Rouvroy, G., Quisquater, J.-J.: An Overview of Power Analysis Attacks against Field Programmable Gate Arrays. IEEE 94(2), 383–394 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Matthieu Rivain
    • 1
  1. 1.Oberthur Technologies & University ofLuxembourg

Personalised recommendations