Applying Visual Object Categorization and Memory Colors for Automatic Color Constancy

  • Esa Rahtu
  • Jarno Nikkanen
  • Juho Kannala
  • Leena Lepistö
  • Janne Heikkilä
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)


This paper presents a framework for using high-level visual information to enhance the performance of automatic color constancy algorithms. The approach is based on recognizing special visual object categories, called here as memory color categories, which have a relatively constant color (e.g.  the sky). If such category is found from image, the initial white balance provided by a low-level color constancy algorithm can be adjusted so that the observed color of the category moves toward the desired color. The magnitude and direction of the adjustment is controlled by the learned characteristics of the particular category in the chromaticity space. The object categorization is performed using bag-of-features method and raw camera data with reduced preprocessing and resolution. The proposed approach is demonstrated in experiments involving the standard gray-world and the state-of-the-art gray-edge color constancy methods. In both cases the introduced approach improves the performance of the original methods.


object categorization category segmentation memory color color constancy raw image 


  1. 1.
    Barnard, K., Martin, L., Coath, A., Funt, B.: A comparison of computational color constancy Algorithms. II. Experiments with image data IEEE Transactions on Image Processing 11(9), 985–996 (2002)CrossRefGoogle Scholar
  2. 2.
    Barnard, K., Cardei, V., Funt, B.: A comparison of computational color constancy algorithms. I: Methodology and experiments with synthesized data. IEEE Transactions on Image Processing 11(9), 972–984 (2002)CrossRefGoogle Scholar
  3. 3.
    Finlayson, G., Hordley, S., Hubel, P.: Color by correlation: a simple, unifying framework for color constancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1209–1221 (2001)CrossRefGoogle Scholar
  4. 4.
    Forsyth, D.: A novel algorithm for color constancy. International Journal of Computer Vision 5(1), 5–36 (1990)CrossRefGoogle Scholar
  5. 5.
    Buchsbaum, G.: A spatial processor model for object color perception. J. Frank. Inst. 310 (1980)Google Scholar
  6. 6.
    van de Weijer, J., Gevers, T., Gijsenij, A.: Gray edge Edge-based color constancy. IEEE Transactions on Image Processing 16(9), 2207–2214 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Obdrzalek, Š., Matas, J., Chum, O.: On the Interaction between Object Recognition and Colour Constancy. In: Proc. International Workshop on Color and Photometric Methods in Computer Vision (2003)Google Scholar
  8. 8.
    van de Weijer, J., Schmid, C., Verbeek, J.: Using high-level visual information for color constancy. In: Proc. International Conference on Computer Vision, pp. 1–8 (2007)Google Scholar
  9. 9.
    Fairchild, M.: Colour appearance models, 2nd edn. John Wiley & Sons, Chichester (2006)Google Scholar
  10. 10.
    Bodrogi, P., Tarczali, T.: Colour memory for various sky, skin, and plant colours: effect of the image context. Color Research and Application 26(4), 278–289 (2001)CrossRefGoogle Scholar
  11. 11.
    Barnard, K.: Practical color constancy. PhD Dissertation, School of Computing Science, Simon Fraser Univ., Bumaby, BC, Canada (1999)Google Scholar
  12. 12.
    Nikkanen, J., Gerasimow, T., Lingjia, K.: Subjective effects of white-balancing errors in digital photography. Optical Engineering 47(11) (2008)Google Scholar
  13. 13.
    Stokes, M., Anderson, S., Chandrasekar, S., Motta, R.: A standard default color space for the internet-sRGB (1996),
  14. 14.
    Csurka, G., Dance, C., Fan, L., Williamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Proc. European conference on Computer Vision, pp. 59–74 (2004)Google Scholar
  15. 15.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  16. 16.
    van de Sande, K., Gevers, T., Snoek, C.: Evaluation of color descriptors for object and scene recognition. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (2008)Google Scholar
  17. 17.
    Silvén, O., Kauppinen, H.: Color vision based methodology for grading lumber. In: Proc. 12th International Conference on Pattern Recognition, vol. 1, pp. 787–790 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Esa Rahtu
    • 1
  • Jarno Nikkanen
    • 2
  • Juho Kannala
    • 1
  • Leena Lepistö
    • 2
  • Janne Heikkilä
    • 1
  1. 1.Machine Vision GroupUniversity of OuluFinland
  2. 2.Nokia CorporationTampereFinland

Personalised recommendations