Towards Protein Interaction Analysis through Surface Labeling

  • Virginio Cantoni
  • Riccardo Gatti
  • Luca Lombardi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)


The knowledge of the biological function of proteins would have great impact on the identification of novel drug targets, and on finding the molecular causes of diseases. Unfortunately, the experimental determination of protein function is a very expensive and time consuming process. As a consequence, the development of computational techniques to complement and guide the experimental process is a crucial and fundamental step for biological analysis.

The final goal of the activity here presented is to provide a method that allows the identification of sites of possible protein-protein and protein-ligand interaction on the basis of the geometrical and topological structure of protein surfaces. The goal is then to discover complementary regions (that is with concave and convex segments that match each others) among different proteins. In particular, we are considering the first step of this process: the segmentation of the protein surface in protuberances and inlets through the analysis of convexity and concavity. To this end, two approaches will be described with a comparative assessment in terms of accuracy and speed of execution.


protein-protein interaction surface labeling heat diffusion 


  1. 1.
    Akutsu, T.: Protein structure alignment using dynamic programming and iterative improvement. IEICE Trans. Inf. and Syst. E78-D, 1–8 (1996)Google Scholar
  2. 2.
    Bock, M.E., Garutti, C., Guerra, C.: Spin image profile: a geometric descriptor for identifying and matching protein cavities. In: Proc. of CSB, San Diego (2007)Google Scholar
  3. 3.
    Bock, M.E., Garutti, C., Guerra, C.: Cavity detection and matching for binding site recognition. Theoretical Computer Science (2008), doi:10.1016/j.tcs.2008.08.018Google Scholar
  4. 4.
    Borgefors, G., Sanniti di Baja, G.: Analysing non-convex 2D and 2D patterns. Computer Vision and Image Understanding 63(1), 145–157 (1996)CrossRefGoogle Scholar
  5. 5.
    Cantoni, V., Cinque, L., Guerra, C., Levialdi, S., Lombardi, L.: 2D Object recognition by multiscale tree matching. Pattern Recognition 31(10), 1443–1454 (1998)CrossRefGoogle Scholar
  6. 6.
    Cantoni, V., Levialdi, S.: Contour labelling by pyramidal processing. In: Duff, M.J.B. (ed.) Intermediate-level Image Processing, ch. XI, pp. 181–190. Academic Press, New York (1986)Google Scholar
  7. 7.
    Coleman, R.G., Burr, M.A., Sourvaine, D.L., Cheng, A.C.: An intuitive approach to measuring protein surface curvature. Proteins: Struct. Funct. Bioinform. 61, 1068–1074 (2005)CrossRefGoogle Scholar
  8. 8.
    Connolly, M.L.: Measurement of protein surface shape by solid angles. J. Mol. Graphics 4, 3–6 (1986)CrossRefGoogle Scholar
  9. 9.
    Day, R., Beck, D.A., Armen, R.S., Daggett, V.: A consensus view of fold space: combining SCOP, CATH, and the Dali Domain Dictionary. Protein Sci. 12(10), 2150–2160 (2003)CrossRefGoogle Scholar
  10. 10.
    Frome, A., Huber, D., Kolluri, R., Baulow, T., Malik, J.: Recognizing Objects in Range Data Using Regional Point Descriptors. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Gallus, G., Neurath, P.W.: Improved computer chromosome analysis incorporating preprocessing and boundary analysis. Phys. Med. Biol. 15, 435–445 (1970)CrossRefGoogle Scholar
  12. 12.
    Glaser, F., Morris, R.J., Najmanovich, R.J., Laskowski, R.A., Thornton, J.M.: A Method for Localizing Ligand Binding Pockets in Protein Structures. PROTEINS: Structure, Function, and Bioinformatics 62, 479–488 (2006)CrossRefGoogle Scholar
  13. 13.
    Horn, B.K.P.: Extended Gaussian images. Proc. IEEE 72(12), 1671–1686 (1984)CrossRefGoogle Scholar
  14. 14. (visited, April 2009)
  15. 15.
    Jacob, F.: Evolution and tinkering. Science 196, 1161–1166 (1977)CrossRefGoogle Scholar
  16. 16.
    Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12), 2577–2637 (1983)CrossRefGoogle Scholar
  17. 17.
    Kang, S.B., Ikeuchi, K.: The complex EGI: a new representation for 3-D pose determination. IEEE-T-PAMI, 707–721 (1993)Google Scholar
  18. 18.
    Masuya, M.: Shape Analysis of Protein Molecule and Legand-Receptor Docking Studies Using Mathematical Morphology, Doctoral Thesis, The University of Tokyo (1996)Google Scholar
  19. 19.
    Nicholls, A., Sharp, K.A., Honig, B.: Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991)CrossRefGoogle Scholar
  20. 20.
    Shulman-Peleg, A., Nussinov, R., Wolfson, H.: Recognition of Functional Sites in Protein Structures. J. Mol. Biol. 339, 607–633 (2004)CrossRefGoogle Scholar
  21. 21.
    Shum, H., Hebert, M., Ikeuchi, K.: On 3D shape similarity. In: Proceedings of the IEEE-CVPR 1996, pp. 526–531 (1996)Google Scholar
  22. 22.
    Sridharan, S., Nicholls, A., Honig, B.: A new vertex algorithm to calculate solvent accessible surface area. Biophys. J. 61, A174 (1992)Google Scholar
  23. 23.
    Takeshi, K.: Multi-scale Pocket Detection on Protein Surface Using 3D Image Processing Technique. IPSJ SIG 2006(99) (BIO-6), 49–56 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Virginio Cantoni
    • 1
    • 2
  • Riccardo Gatti
    • 2
  • Luca Lombardi
    • 2
  1. 1.IEF Institut d’Électronique FondamentaleUniversité Paris-Sud XIFrance
  2. 2.Dept. of Computer Engineering and System ScienceUniversity of PaviaItaly

Personalised recommendations