Similarity Searches in Face Databases

  • Annalisa Franco
  • Dario Maio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5716)


In this paper the problem of similarity searches in face databases is addressed. An approach based on relevance feedback is proposed to iteratively improve the query result. The approach is suitable both to supervised and unsupervised contexts. The efficacy of the learning procedures are confirmed by the results obtained on publicly available databases of faces.


Similarity Search Local Binary Pattern Query Image Relevance Feedback Face Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition with Local Binary Patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Baker, E., Seltzer, M.: The Mug-Shot Search Problem. In: Proc. Vis. Int., pp. 421–430 (1998)Google Scholar
  3. 3.
  4. 4.
    Fang, Y., Geman, D., Boujemaa, N.: An Interactive System for Mental Face Retrieval. In: Proc. International Workshop on Multimedia information retrieval, pp. 193–200 (2005)Google Scholar
  5. 5.
    Franco, A., Lumini, A.: Mixture of KL Subspaces for relevance feedback. Multimedia Tools and Applications 37(2), 189–209 (2008)CrossRefGoogle Scholar
  6. 6.
    Franco, A., Maio, D., Lumini, A.: A new approach for relevance feedback through positive and negative samples. In: Proc. ICPR, vol. 4, pp. 905–908 (2004)Google Scholar
  7. 7.
    Fukunaga, K.: Statistical Pattern Recognition. Academic Press, San Diego (1990)zbMATHGoogle Scholar
  8. 8.
    MacQueen, J.B.: Some Methods for classification and Analysis of Multivariate Observations. In: Proc. Symp. on Math. Stat. and Probability, vol. 1, pp. 281–297 (1967)Google Scholar
  9. 9.
    Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29(1), 51–59 (1996)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Viola, P., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: Proc. of the IEEE ICCVPR, vol. 1, pp. 511–518 (2001)Google Scholar
  12. 12.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Computing Surveys 35(4), 399–458 (2003)CrossRefGoogle Scholar
  13. 13.
    Zhou, X.S., Huang, T.S.: Relevance feedback for image retrieval: a comprehensive review. Multimedia Systems 8(6), 536–544 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Annalisa Franco
    • 1
  • Dario Maio
    • 1
  1. 1.DEISUniversità di BolognaBolognaItaly

Personalised recommendations