Advertisement

Multi Criteria Decision Methods for Coordinating Case-Based Agents

  • Beatriz López
  • Carles Pous
  • Pablo Gay
  • Albert Pla
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5774)

Abstract

There is an increasing interest on ensemble learning since it reduces the bias-variance problem of several classifiers. In this paper we approach an ensemble learning method in a multi-agent environment. Particularly, we use genetic algorithms to learnt weights in a boosting scenario where several case-based reasoning agents cooperate. In order to deal with the genetic algorithm results, we propose several multi-criteria decision making methods. We experimentally test the methods proposed in a breast cancer diagnosis database.

Keywords

Ensemble Learning Case-Based Reasoning Multi Criteria Decision Making 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bach, K., Reichle, M., Reichle-Schmehl, A., Althoff, K.-D.: Implementing a coordination agent for modularised case bases. In: AI 2008, 13th UK Workshop on CCBR, pp. 1–12 (2008) Google Scholar
  2. 2.
    Birk, A.: Boosting cooperation by evolving trust. Applied Artificial Intelligence 14, 769–784 (2000)CrossRefGoogle Scholar
  3. 3.
    Fawcett, T.: Roc graphs: Notes and practical considerations for data mining researchers. Technical Report HPL-2003-4., HP Labs (2003)Google Scholar
  4. 4.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boostingg. Journal of Computer and System Sciences 55(1), 119–139 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hernández-Lobato, D., Hernández-Lobato, J.M., Ruiz-Torrubiano, R., Valle, A.: Pruning adaptive boosting ensembles by means of a genetic algorithm. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 322–329. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Komathyk, K., Narayanasamy, P.: Trust-based evolutionary game model assisting aodv routing againsts selfishness. Journal of network and computer-application 31(4), 446–471 (2008)CrossRefGoogle Scholar
  7. 7.
    Yalabik, Ï., Yarman-Vural, F.T., Uçoluk, G., Sehitoglu, O.T.: A pattern classification approach for boosting with genetic algorithms. In: 22th International Symposium on Computer and Information Sciences, pp. 1–6 (2007)Google Scholar
  8. 8.
    López, B., Pous, C., Gay, P., Pla, A.: Multi criteria decision methods for boosting CBR agents with genetic algorithms. In: AAMAS workshop on Adaptative and Learning Agents, pp. 55–209, 58 (2009)Google Scholar
  9. 9.
    López, B., Pous, C., Pla, A., Gay, P.: Boosting CBR agents with genetic algorithms. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS (LNAI), vol. 5650, pp. 195–209. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Martin, F.J., Plaza, E., Arcos, J.L.: Knowledge and experience reuse through communication among competent (peer) agents. International Journal of Software Engineering and Knowledge Engineering 9(3), 319–341 (1999)CrossRefGoogle Scholar
  11. 11.
    Mitchell, M.: An Introduction to Genetic Algorithms. The MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  12. 12.
    Nagendra-Prasad, M.V., Plaza, E.: Corporate memories as distributed case libraries. In: 10th Banff Knowledge Acquisition for Knowledge-based Systems Workshop, pp. 1–19 (1996)Google Scholar
  13. 13.
    Ontañon, S., Plaza, E.: Cooperative multiagent learning. In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) AAMAS 2000 and AAMAS 2002. LNCS (LNAI), vol. 2636, pp. 1–17. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Özyer, T., Alhajj, R., Barker, K.: A boosting genetic fuzzy classifier for intrusion detection using data mining techniques for rule pre-screening. In: Design and application of hybrid intelligent systems, pp. 983–992. IOS Press, Amsterdam (2006)Google Scholar
  15. 15.
    Pous, C., Gay, P., Pla, A., Brunet, J., Sanz, J., López, B.: Modeling reuse on case-base reasoning with application to breast cancer diagnosis. In: Dochev, D., Pistore, M., Traverso, P. (eds.) AIMSA 2008. LNCS (LNAI), vol. 5253, pp. 322–332. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Pous, C., Gay, P., Pla, A., López, B.: Collecting methods for medical CBR development and experimentation. In: Schaaf, M. (ed.) Workshop CBR in the Health Sciences (ECCBR-HC), pp. 89–98. Tharax-Verlag (2008)Google Scholar
  17. 17.
    Teodorescu, E.I., Petridis, M.: An architecture for multiple heterogeneous case-based reasoning employing agent technologies. In: CIMAS (2008), http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-375/
  18. 18.
    Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggregation Operators. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  19. 19.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Beatriz López
    • 1
  • Carles Pous
    • 1
  • Pablo Gay
    • 1
  • Albert Pla
    • 1
  1. 1.University of GironaGironaSpain

Personalised recommendations