Low-Overhead Implementation of a Soft Decision Helper Data Algorithm for SRAM PUFs

  • Roel Maes
  • Pim Tuyls
  • Ingrid Verbauwhede
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5747)

Abstract

Using a Physically Unclonable Function or PUF to extract a secret key from the unique submicron structure of a device, instead of storing it in non-volatile memory, provides interesting advantages like physical unclonability and tamper evidence. However, an additional Helper Data Algorithm (HDA) is required to deal with the fuzziness of the PUF’s responses. To provide a viable alternative to costly protected non-volatile memory, the PUF+HDA construction should have a very low overhead. In this work, we propose the first HDA design using soft-decision information providing an implementation that occupies 44.8% less resources than previous proposals. Moreover, the required size of the used PUF can be reduced upto 58.4% due to the smaller entropy loss.

Keywords

Physically Unclonable Functions Helper Data Algorithm FPGA Implementation Soft-Decision Decoder Toeplitz Hash 

References

  1. 1.
    Verbauwhede, I., Schaumont, P.: Design methods for security and trust. In: Proc. of Design Automation and Test in Europe (DATE 2008), NICE,FR, p. 6 (2007)Google Scholar
  2. 2.
    Anderson, R.J., Kuhn, M.G.: Low Cost Attacks on Tamper Resistant Devices. In: Christianson, B., Lomas, M. (eds.) Security Protocols 1997. LNCS, vol. 1361, pp. 125–136. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Skorobogatov, S.P.: Semi-invasive attacks - A new approach to hardware security analysis. University of cambridge, computer laboratory: Technical report (April 2005)Google Scholar
  4. 4.
    Yang, J., Gao, L., Zhang, Y.: Improving Memory Encryption Performance in Secure Processors. IEEE Trans. Comput. 54(5), 630–640 (2005)CrossRefGoogle Scholar
  5. 5.
    Posch, R.: Protecting Devices by Active Coating. Journal of Universal Computer Science 4(7), 652–668 (1998)Google Scholar
  6. 6.
    Ravikanth, P.S.: Physical one-way functions. PhD thesis, Chair-Benton, Stephen, A. (2001)Google Scholar
  7. 7.
    Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.: Read-Proof Hardware from Protective Coatings. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Tuyls, P., Batina, L.: RFID-Tags for Anti-Counterfeiting. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 115–131. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random functions. In: CCS 2002: Proceedings of the 9th ACM conference on Computer and communications security, pp. 148–160. ACM, New York (2002)Google Scholar
  10. 10.
    Lee, J.W., Lim, D., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: A technique to build a secret key in integrated circuits for identification and authentication applications. In: VLSI Circuits, 2004. Technical Papers, pp. 176–179 (June 2004)Google Scholar
  11. 11.
    Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA Intrinsic PUFs and Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: Extended abstract: The butterfly PUF protecting IP on every FPGA. In: IEEE International Workshop on Hardware-Oriented Security and Trust (HOST-2008), pp. 67–70 (2008)Google Scholar
  13. 13.
    Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing 38(1), 97–139 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Linnartz, J.P.M.G., Tuyls, P.: New shielding functions to enhance privacy and prevent misuse of biometric templates. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 393–402. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient Helper Data Key Extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Su, Y., Holleman, J., Otis, B.: A Digital 1.6 pJ/bit Chip Identification Circuit Using Process Variations. IEEE Journal of Solid-State Circuits 43(1), 69–77 (2008)CrossRefGoogle Scholar
  17. 17.
    Holcomb, D.E., Burleson, W.P., Fu, K.: Initial SRAM state as a fingerprint and source of true random numbers for RFID tags. In: Proceedings of the Conference on RFID Security (2007)Google Scholar
  18. 18.
    Maes, R., Tuyls, P., Verbauwhede, I.: A Soft Decision Helper Data Algorithm for SRAM PUFs. In: IEEE International Symposium on Information Theory (2009)Google Scholar
  19. 19.
    Boyen, X.: Reusable Cryptographic Fuzzy Extractors. In: ACM CCS 2004, pp. 82–91. ACM Press, New York (2004)Google Scholar
  20. 20.
    Carter, J.L., Wegman, M.N.: Universal classes of hash functions. In: STOC 1977: Proceedings of the 9th ACM symposium on Theory of computing, pp. 106–112. ACM Press, New York (1977)Google Scholar
  21. 21.
    Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy Amplification by Public Discussion. SIAM J. Comput. 17(2), 210–229 (1988)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. on Information Theory 13(2), 260–269 (1967)CrossRefMATHGoogle Scholar
  23. 23.
    Gallager, R.G.: Low Density Parity-Check Codes. IRE Trans. Inform. Theory 8, 21–28 (1962)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Silverman, R.A., Balser, M.: Coding for Constant-Data-Rate Systems-Part I. A New Error-Correcting Code. Proceedings of the IRE 42(9), 1428–1435 (1954)CrossRefGoogle Scholar
  25. 25.
    Schnabl, G., Bossert, M.: Soft-decision decoding of Reed-Muller codes as generalized multiple concatenated codes. IEEE Trans. on Information Theory 41(1), 304–308 (1995)CrossRefMATHGoogle Scholar
  26. 26.
    Krawczyk, H.: LFSR-Based Hashing and Authentication. In: Desmedt, Y.G. (ed.) CRYPTO 1994, vol. 839, pp. 129–139. Springer, Heidelberg (1994)Google Scholar
  27. 27.
    George, M., Alfke, P.: Linear Feedback Shift Registers in Virtex Devices (April 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Roel Maes
    • 1
  • Pim Tuyls
    • 1
    • 2
  • Ingrid Verbauwhede
    • 1
  1. 1.ESAT/COSIC and IBBTK.U. LeuvenLeuvenBelgium
  2. 2.Intrinsic-IDEindhovenThe Netherlands

Personalised recommendations