Reconstructing 3-Colored Grids from Horizontal and Vertical Projections Is NP-hard

  • Christoph Dürr
  • Flavio Guiñez
  • Martín Matamala
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5757)

Abstract

We consider the problem of coloring a grid using k colors with the restriction that in each row and each column has an specific number of cells of each color. In an already classical result, Ryser obtained a necessary and sufficient condition for the existence of such a coloring when two colors are considered. This characterization yields a linear time algorithm for constructing such a coloring when it exists. Gardner et al. showed that for k ≥ 7 the problem is NP-hard. Afterward Chrobak and Dürr improved this result, by proving that it remains NP-hard for k ≥ 4. We solve the gap by showing that for 3 colors the problem is already NP-hard. Besides we also give some results on tiling tomography.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpers, A., Rodek, L., Poulsen, H.F., Knudsen, E., Herman, G.T.: Discrete Tomography for Generating Grain Maps of Polycrystals. In: Advances in Discrete Tomography and Its Applications, pp. 271–301. Birkhäuser, Basel (2007)CrossRefGoogle Scholar
  2. 2.
    Chrobak, M., Dürr, C.: Reconstructing polyatomic structures from discrete X-rays: NP-completeness proof for three atoms. Theoretical Computer Science 259, 81–98 (2001)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chrobak, M., Couperus, P., Dürr, C., Woeginger, G.: On tiling under tomographic constraints. Theoret. Comput. Sci. 290(3), 2125–2136 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Dürr, C., Goles, E., Rapaport, I., Rémila, E.: Tiling with bars under tomographic constraints. Theoret. Comput. Sci. 290(3), 1317–1329 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gardner, R., Gritzmann, P., Prangenberg, D.: On the computational complexity of determining polyatomic structures by X-rays. Theoretical Computer Science 233, 91–106 (2000)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H.Freeman and Co., New York (1979)MATHGoogle Scholar
  7. 7.
    Kuba, A., Herman, G.T.: Discrete tomography: A Historical Overview. In: Discrete tomography: Foundations, Algorithms and Applications. Birkhäuser, Basel (1999)Google Scholar
  8. 8.
    Ryser, H.J.: Matrices of zeros and ones. Bull. Am. Math. Soc. 66, 442–464 (1960)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Thiant, N.: Constructions et reconstructions de pavages de dominos. PhD thesis, Université Paris 6 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christoph Dürr
    • 1
  • Flavio Guiñez
    • 2
  • Martín Matamala
    • 3
  1. 1.CNRS, LIX (UMR 7161)Ecole PolytechniquePalaiseauFrance
  2. 2.DIMUniversidad de ChileSantiagoChile
  3. 3.DIM and CMM (UMI 2807, CNRS)Universidad de ChileSantiagoChile

Personalised recommendations