Minimizing Movement: Fixed-Parameter Tractability

  • Erik D. Demaine
  • MohammadTaghi Hajiaghayi
  • Dániel Marx
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5757)


We study an extensive class of movement minimization problems which arise from many practical scenarios but so far have little theoretical study. In general, these problems involve planning the coordinated motion of a collection of agents (representing robots, people, map labels, network messages, etc.) to achieve a global property in the network while minimizing the maximum or average movement (expended energy). The only previous theoretical results about this class of problems are about approximation, and mainly negative: many movement problems of interest have polynomial inapproximability. Given that the number of mobile agents is typically much smaller than the complexity of the environment, we turn to fixed-parameter tractability. We characterize the boundary between tractable and intractable movement problems in a very general set up: it turns out the complexity of the problem fundamentally depends on the treewidth of the minimal configurations. Thus the complexity of a particular problem can be determined by answering a purely combinatorial question. Using our general tools, we determine the complexity of several concrete problems and fortunately show that many movement problems of interest can be solved efficiently.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution. In: STOC 2007, pp. 67–74 (2007)Google Scholar
  2. 2.
    Bredin, J.L., Demaine, E.D., Hajiaghayi, M., Rus, D.: Deploying sensor networks with guaranteed capacity and fault tolerance. In: MOBIHOC 2005, pp. 309–319 (2005)Google Scholar
  3. 3.
    Canny, J.F.: The Complexity of Robot Motion Planning. MIT Press, Cambridge (1987)Google Scholar
  4. 4.
    Corke, P., Hrabar, S., Peterson, R., Rus, D., Saripalli, S., Sukhatme, G.: Autonomous deployment of a sensor network using an unmanned aerial vehicle. In: ICRA 2004, New Orleans, USA (2004)Google Scholar
  5. 5.
    Corke, P., Hrabar, S., Peterson, R., Rus, D., Saripalli, S., Sukhatme, G.: Deployment and connectivity repair of a sensor net with a flying robot. In: ISER 2004, Singapore (2004)Google Scholar
  6. 6.
    Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.: Algorithmic graph minor theory: Decomposition, approximation, and coloring. In: FOCS 2005, pp. 637–646 (2005)Google Scholar
  7. 7.
    Demaine, E.D., Hajiaghayi, M., Mahini, H., Sayedi-Roshkhar, A.S., Oveisgharan, S., Zadimoghaddam, M.: Minimizing movement. ACM Trans. AlgorithmsGoogle Scholar
  8. 8.
    Friggstad, Z., Salavatipour, M.R.: Minimizing movement in mobile facility location problems. In: FOCS 2008, pp. 357–366 (2008)Google Scholar
  9. 9.
    Hsiang, T.-R., Arkin, E.M., Bender, M.A., Fekete, S.P., Mitchell, J.S.B.: Algorithms for rapidly dispersing robot swarms in unknown environments. In: WAFR 2003, pp. 77–94 (2003)Google Scholar
  10. 10.
    Hüffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-parameter algorithms. Comput. J. 51(1), 7–25 (2008)CrossRefGoogle Scholar
  11. 11.
    Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with hereditary properties. Theoret. Comput. Sci. 289(2), 997–1008 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)CrossRefMATHGoogle Scholar
  13. 13.
    Reif, J.H., Wang, H.: Social potential fields: a distributed behavioral control for autonomous robots. In: WAFR 2005, pp. 331–345 (2005)Google Scholar
  14. 14.
    Schultz, A.C., Parker, L.E., Schneider, F.E. (eds.): Multi-Robot Systems: From Swarms to Intelligent Automata. Springer, Heidelberg (2003)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Erik D. Demaine
    • 1
  • MohammadTaghi Hajiaghayi
    • 2
  • Dániel Marx
    • 3
  1. 1.MIT Computer Science and Artificial Intelligence LaboratoryCambridgeUSA
  2. 2.AT&T Labs — ResearchFlorham ParkUSA
  3. 3.Department of Computer Science and Information TheoryBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations