Solving Dominating Set in Larger Classes of Graphs: FPT Algorithms and Polynomial Kernels

  • Geevarghese Philip
  • Venkatesh Raman
  • Somnath Sikdar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5757)

Abstract

We show that the k-Dominating Set problem is fixed parameter tractable (FPT) and has a polynomial kernel for any class of graphs that exclude Ki,j as a subgraph, for any fixed i,j ≥ 1. This strictly includes every class of graphs for which this problem has been previously shown to have FPT algorithms and/or polynomial kernels. In particular, our result implies that the problem restricted to bounded-degenerate graphs has a polynomial kernel, solving an open problem posed by Alon and Gutner in [3].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for Dominating Set. Journal of the ACM 51(3), 363–384 (2004)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alon, N., Gutner, S.: Linear time algorithms for finding a dominating set of fixed size in degenerated graphs. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 394–405. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Alon, N., Gutner, S.: Kernels for the dominating set problem on graphs with an excluded minor. Technical Report TR08-066, The Electronic Colloquium on Computational Complexity (ECCC) (2008)Google Scholar
  4. 4.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels (Extended abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization: Lower bounds and upper bounds on kernel size. SIAM Journal of Computing 37(4), 1077–1106 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. Journal of the ACM 52(6), 866–893 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Diestel, R.: Graph theory, 3rd edn. Springer, Heidelberg (2005)MATHGoogle Scholar
  8. 8.
    Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through Colors and IDs. Accepted at ICALP 2009 (2009)Google Scholar
  9. 9.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  10. 10.
    Ellis, J.A., Fan, H., Fellows, M.R.: The Dominating Set problem is fixed parameter tractable for graphs of bounded genus. Journal of Algorithms 52(2), 152–168 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fomin, F.V., Thilikos, D.M.: Fast parameterized algorithms for graphs on surfaces: Linear kernel and exponential speed-up. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 581–592. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: Branch-width and exponential speed-up. SIAM Journal of Computing 36(2), 281–309 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Franceschini, G., Luccio, F., Pagli, L.: Dense trees: a new look at degenerate graphs. Journal of Discrete Algorithms 4, 455–474 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP–Completeness. Freeman, San Francisco (1979)MATHGoogle Scholar
  15. 15.
    Golovach, P.A., Villanger, Y.: Parameterized complexity for domination problems on degenerate graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  17. 17.
    Raman, V., Saurabh, S.: Short cycles make W-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles. Algorithmica 52(2), 203–225 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Sachs, H.: Regular graphs with given girth and restricted circuits. Journal of the London Mathematical Society s1-38(1), 423–429 (1963)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Geevarghese Philip
    • 1
  • Venkatesh Raman
    • 1
  • Somnath Sikdar
    • 1
  1. 1.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations