Fast Evaluation of Interlace Polynomials on Graphs of Bounded Treewidth

  • Markus Bläser
  • Christian Hoffmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5757)

Abstract

We consider the multivariate interlace polynomial introduced by Courcelle (2008), which generalizes several interlace polynomials defined by Arratia, Bollobás, and Sorkin (2004) and by Aigner and van der Holst (2004). We present an algorithm to evaluate the multivariate interlace polynomial of a graph with n vertices given a tree decomposition of the graph of width k. The best previously known result (Courcelle 2008) employs a general logical framework and leads to an algorithm with running time f(kn, where f(k) is doubly exponential in k. Analyzing the GF(2)-rank of adjacency matrices in the context of tree decompositions, we give a faster and more direct algorithm. Our algorithm uses \(2^{3k^2+O(k)}\cdot n\) arithmetic operations and can be efficiently implemented in parallel.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arratia, R., Bollobás, B., Coppersmith, D., Sorkin, G.B.: Euler circuits and DNA sequencing by hybridization. Discrete Appl. Math. 104(1-3), 63–96 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Arratia, R., Bollobás, B., Sorkin, G.B.: The interlace polynomial of a graph. J. Comb. Theory Ser. B 92(2), 199–233 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Martin, P.: Enumérations Eulériennes dans le multigraphes et invariants de Tutte–Grothendieck. PhD thesis, Grenoble, France (1977)Google Scholar
  4. 4.
    Las Vergnas, M.: Le polynôme de martin d’un graphe eulerian. Ann. Discrete Math. 17, 397–411 (1983)MATHGoogle Scholar
  5. 5.
    Las Vergnas, M.: Eulerian circuits of 4-valent graphs imbedded in surfaces. In: Algebraic Methods in Graph Theory, Szeged, Hungary, 1978. Colloq. Math. Soc. János Bolyai, vol. 25, pp. 451–477. North-Holland, Amsterdam (1981)Google Scholar
  6. 6.
    Las Vergnas, M.: On the evaluation at (3,3) of the Tutte polynomial of a graph. J. Comb. Theory Ser. B 45(3), 367–372 (1988)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Jaeger, F.: On Tutte polynomials and cycles of plane graphs. J. Comb. Theory Ser. B 44(2), 127–146 (1988)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Ellis-Monaghan, J.A.: New results for the Martin polynomial. J. Comb. Theory Ser. B 74(2), 326–352 (1998)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ellis-Monaghan, J.A.: Martin polynomial miscellanea. In: Proceedings of the 30th Southeastern International Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, FL, pp. 19–31 (1999)Google Scholar
  10. 10.
    Bollobás, B.: Evaluations of the circuit partition polynomial. J. Comb. Theory Ser. B 85(2), 261–268 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bouchet, A.: Isotropic systems. Eur. J. Comb. 8(3), 231–244 (1987)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bouchet, A.: Graphic presentations of isotropic systems. J. Comb. Theory Ser. B 45(1), 58–76 (1988)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bouchet, A.: Tutte Martin polynomials and orienting vectors of isotropic systems. Graphs Combin. 7, 235–252 (1991)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Bénard, D., Bouchet, A., Duchamp, A.: On the Martin and Tutte polynomials. Technical report, Département d’Infornmatique, Université du Maine, Le Mans, France (1997)Google Scholar
  15. 15.
    Ellis-Monaghan, J.A., Sarmiento, I.: Distance hereditary graphs and the interlace polynomial. Comb. Probab. Comput. 16(6), 947–973 (2007)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Aigner, M., van der Holst, H.: Interlace polynomials. Linear Algebra and its Applications 377, 11–30 (2004)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Danielsen, L.E., Parker, M.G.: Interlace polynomials: Enumeration, unimodality, and connections to codes (2008) preprint, arXiv:0804.2576v1Google Scholar
  18. 18.
    Bouchet, A.: Graph polynomials derived from Tutte–Martin polynomials. Discrete Mathematics 302(1-3), 32–38 (2005)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Ellis-Monaghan, J.A., Sarmiento, I.: Isotropic systems and the interlace polynomial (2006) preprint, arXiv:math/0606641v2Google Scholar
  20. 20.
    Courcelle, B.: A multivariate interlace polynomial and its computation for graphs of bounded clique-width. The Electronic Journal of Combinatorics 15(1) (2008)Google Scholar
  21. 21.
    Arratia, R., Bollobás, B., Sorkin, G.B.: A two-variable interlace polynomial. Combinatorica 24(4), 567–584 (2004)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Traldi, L.: Weighted interlace polynomials (2008) preprint, arXiv:0808.1888v1Google Scholar
  23. 23.
    Riera, C., Parker, M.G.: One and two-variable interlace polynomials: A spectral interpretation. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 397–411. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Bläser, M., Hoffmann, C.: On the complexity of the interlace polynomial. In: Albers, S., Weil, P. (eds.) 25th International Symposium on Theoretical Aspects of Computer Science (STACS 2008), Dagstuhl, Germany, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, pp. 97–108 (2008)Google Scholar
  25. 25.
    Courcelle, B., il Oum, S.: Vertex-minors, monadic second-order logic, and a conjecture by seese. J. Comb. Theory, Ser. B 97(1), 91–126 (2007)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Applied Mathematics 101(1-3), 77–114 (2000)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic. Discrete Applied Mathematics 108(1-2), 23–52 (2001)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Bläser, M., Hoffmann, C.: Fast computation of interlace polynomials on graphs of bounded treewidth (2009) preprint, arXiv:0902.1693Google Scholar
  29. 29.
    Andrzejak, A.: An algorithm for the Tutte polynomials of graphs of bounded treewidth. Discrete Mathematics 190(1-3), 39–54 (1998)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Noble, S.D.: Evaluating the Tutte polynomial for graphs of bounded tree-width. Combinatorics, Probability & Computing 7(3), 307–321 (1998)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. Comput. J. 51(3), 255–269 (2008)CrossRefGoogle Scholar
  32. 32.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Kloks, T.: Treewidth. Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Markus Bläser
    • 1
  • Christian Hoffmann
    • 1
  1. 1.Saarland UniversityGermany

Personalised recommendations