Accelerating Multi-modal Route Planning by Access-Nodes

  • Daniel Delling
  • Thomas Pajor
  • Dorothea Wagner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5757)


Recent research on fast route planning algorithms focused either on road networks or on public transportation. However, on the long run, we are interested in planning routes in a multi-modal scenario: we start by car to reach the nearest train station, ride the train to the airport, fly to an airport near our destination and finally take a taxi. In other words, we need to incorporate public transportation into road networks. However, we do not want to switch the type of transportation too often. We end up in a label constrained variant of the shortest path problem. In this work, we present a first efficient solution to a restricted variant of this problem including experimental results for transportation networks with up to 125 Mio. edges.


Road Network Transportation Network Priority Queue Query Time Short Path Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Mendelzon, A.O., Wood, P.T.: Finding Regular Simple Paths in Graph Databases. SIAM Journal on Computing 24(6), 1235–1258 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Barrett, C., Jacob, R., Marathe, M.V.: Formal-Language-Constrained Path Problems. SIAM Journal on Computing 30(3), 809–837 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barrett, C., Bisset, K., Jacob, R., Konjevod, G., Marathe, M.V.: Classical and Contemporary Shortest Path Problems in Road Networks: Implementation and Experimental Analysis of the TRANSIMS Router. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, p. 126. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Hart, P.E., Nilsson, N., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4, 100–107 (1968)CrossRefGoogle Scholar
  7. 7.
    Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1962)zbMATHGoogle Scholar
  8. 8.
    Barrett, C., Bisset, K., Holzer, M., Konjevod, G., Marathe, M.V., Wagner, D.: Engineering Label-Constrained Shortest-Path Algorithms. In: Shortest Paths: Ninth DIMACS Implementation Challenge. DIMACS Book. American Mathematical Society (to appear, 2009)Google Scholar
  9. 9.
    Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast Routing in Road Networks with Transit Nodes. Science 316(5824), 566 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Orda, A., Rom, R.: Shortest-Path and Minimum Delay Algorithms in Networks with Time-Dependent Edge-Length. Journal of the ACM 37(3), 607–625 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kleene, S.C.: Representation of Events in Nerve Nets and Finite Automata. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies. Annals of Mathematics Studies, pp. 3–42. Princeton University Press, Princeton (1956)Google Scholar
  12. 12.
    Rabin, M.O., Scott, D.: Finite Automata and their Decision Problems. IBM Journal of Research and Development 3(1559), 114–125Google Scholar
  13. 13.
    Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient Models for Timetable Information in Public Transportation Systems. ACM J. of Exp. Algorithmics 12, Article 2.4 (2007)Google Scholar
  14. 14.
    Star Alliance (1997),
  15. 15.
    Oneworld Management Ltd. (1999),
  16. 16.
    Pajor, T.: Multi-Modal Route Planning. Master’s thesis, Universität Karlsruhe (TH), Fakultät für Informatik (2009)Google Scholar
  17. 17.
    Dean, B.C.: Continuous-Time Dynamic Shortest Path Algorithms. Master’s thesis, Massachusetts Institute of Technology (1999)Google Scholar
  18. 18.
    Delling, D.: Time-Dependent SHARC-Routing. Algorithmica (to appear, 2009)Google Scholar
  19. 19.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 303–318. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Hilger, M., Köhler, E., Möhring, R.H., Schilling, H.: Fast Point-to-Point Shortest Path Computations with Arc-Flags. In: Shortest Paths: Ninth DIMACS Implementation Challenge. DIMACS Book. American Mathematical Society (to appear, 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Daniel Delling
    • 1
  • Thomas Pajor
    • 1
  • Dorothea Wagner
    • 1
  1. 1.Department of Computer ScienceUniversität Karlsruhe (TH)KarlsruheGermany

Personalised recommendations