Inclusion/Exclusion Meets Measure and Conquer

Exact Algorithms for Counting Dominating Sets
  • Johan M. M. van Rooij
  • Jesper Nederlof
  • Thomas C. van Dijk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5757)


In this paper, two central techniques from the field of exponential time algorithms are combined for the first time: inclusion/exclusion and branching with measure and conquer analysis.

In this way, we have obtained an algorithm that, for each κ, counts the number of dominating sets of size κ in \(\mathcal{O}(1.5048^n)\) time. This algorithm improves the previously fastest algorithm that counts the number of minimum dominating sets. The algorithm is even slightly faster than the previous fastest algorithm for minimum dominating set, thus improving this result while computing much more information.

When restricted to c-dense graphs, circle graphs, 4-chordal graphs or weakly chordal graphs, our combination of branching with inclusion/exclusion leads to significantly faster counting and decision algorithms than the previously fastest algorithms for dominating set.

All results can be extended to counting (minimum) weight dominating sets when the size of the set of possible weight sums is polynomially bounded.


Fast Algorithm Exact Algorithm Tree Decomposition Chordal Graph Reduction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bax, E.T.: Inclusion and exclusion algorithm for the hamiltonian path problem. Information Processing Letters 47(4), 203–207 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bax, E.T.: Recurrence-based reductions for inclusion and exclusion algorithms applied to #P problems (1996)Google Scholar
  3. 3.
    Björklund, A., Husfeldt, T.: Exact algorithms for exact satisfiability and number of perfect matchings. Algorithmica 52(2), 226–249 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution. In: STOC 2007: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pp. 67–74. ACM, New York (2007)CrossRefGoogle Scholar
  5. 5.
    Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM Journal of Computing, Special Issue for FOCS 2006 (to appear)Google Scholar
  6. 6.
    Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–23 (1993)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. The Computer Journal 51(3), 255–269 (2008)CrossRefGoogle Scholar
  8. 8.
    Eppstein, D.: Quasiconvex analysis of backtracking algorithms. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, pp. 781–790 (2004)Google Scholar
  9. 9.
    Fomin, F.V., Gaspers, S., Saurabh, S., Stepanov, A.A.: On two techniques of combining branching and treewidth. In: Algorithmica Special issue of ISAAC 2006 (2006) (to appear)Google Scholar
  10. 10.
    Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: Domination — a case study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: a simple O(20.288n) independent set algorithm. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, pp. 18–25 (2006)Google Scholar
  12. 12.
    Fomin, F.V., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Information Processing Letters 97, 191–196 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Gaspers, S., Kratsch, D., Liedloff, M.: Exponential time algorithms for the minimum dominating set problem on some graph classes. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 148–159. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Gaspers, S., Sorkin, G.B.: A universally fastest algorithm for max 2-sat, max 2-csp, and everything in between. In: Proceedings of the 20th annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2009). SIAM, Philadelphia (to appear, 2009)Google Scholar
  16. 16.
    Grandoni, F.: A note on the complexity of minimum dominating set. J. Disc. Alg. 4, 209–214 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Karp, R.M.: Dynamic programming meets the principle of inclusion-exclusion. Operations Research Letters 1, 49–51 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Algorithms based on the treewidth of sparse graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 385–396. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Paulusma, D., van Rooij, J.M.M.: A fast exact algorithm for the 2-role assignment problem (submitted)Google Scholar
  20. 20.
    Randerath, B., Schiermeyer, I.: Exact algorithms for minimum dominating set. Technical Report zaik2004-469, Universität zu Köln, Cologne, Germany (2005)Google Scholar
  21. 21.
    van Rooij, J.M.M., Bodlaender, H.L.: Design by measure and conquer – a faster exact algorithm for dominating set. In: Albers, S., Weil, P. (eds.) Proceedings of the 25th Annual Symposium on Theoretical Aspects of Computer Science, STACS 2008, pp. 657–668. IBFI Schloss Dagstuhl (2008)Google Scholar
  22. 22.
    van Rooij, J.M.M., Bodlaender, H.L., Rossmanith, P.: Dynamic programming on tree decompositions using generalised fast subset convolution. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 566–577. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    van Rooij, J.M.M., Nederlof, J., van Dijk, T.C.: Inclusion/exclusion meets measure and conquer: Exact algorithms for counting dominating set. Technical Report UU-CS-2008-043, Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Johan M. M. van Rooij
    • 1
  • Jesper Nederlof
    • 2
  • Thomas C. van Dijk
    • 1
  1. 1.Department of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands
  2. 2.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations