Advertisement

Bipartite Graph Matchings in the Semi-streaming Model

(Extended Abstract)
  • Sebastian Eggert
  • Lasse Kliemann
  • Anand Srivastav
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5757)

Abstract

We present an algorithm for finding a large matching in a bipartite graph in the semi-streaming model. In this model, the input graph G = (V, E) is represented as a stream of its edges in some arbitrary order, and storage of the algorithm is bounded by O(n , polylog n) bits, where n = |V|. For ε> 0, our algorithm finds a \(\frac{1}{1+\epsilon}\)-approximation of a maximum-cardinality matching and uses \(O{({(\frac{1}{\epsilon})^8})}\) passes over the input stream. The only previously known algorithm with such arbitrarily good approximation – though for general graphs – required exponentially many \(\Omega({{(\frac{1}{\epsilon})^{\frac{1}{\epsilon}}}})\) passes (McGregor 2005).

Keywords

bipartite graph matching streaming algorithms approx algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berge, C.: Two theorems in graph theory. Proceedings of the National Academy of Sciences of the United States of America 43(9), 842–844 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-streaming model. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 531–543. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    McGregor, A.: Finding graph matchings in data streams. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624, pp. 170–181. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In: 45th Symposium on Foundations of Computer Science (FOCS 2004), Rome, Italy, October 2004, pp. 248–255 (2004)Google Scholar
  6. 6.
    Muthukrishnan, S.M.: Data streams: Algorithms and applications. Foundations and Trends in Theoretical Computer Science 1(2), 67 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sebastian Eggert
    • 1
  • Lasse Kliemann
    • 1
  • Anand Srivastav
    • 1
  1. 1.Institut für InformatikChristian-Albrechts-Universität KielKiel

Personalised recommendations