An Average-Case Analysis for Rate-Monotonic Multiprocessor Real-Time Scheduling

  • Andreas Karrenbauer
  • Thomas Rothvoß
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5757)


We introduce the First Fit Matching Periods algorithm for rate-monotonic multiprocessor scheduling of periodic tasks with implicit deadlines and show that it yields asymptotically optimal processor assignments if utilization values are chosen uniformly at random. More precisely we prove that the expected waste is upper bounded by \(\mathcal{O}(n^{3/4} (\log n)^{3/8})\). Here the waste denotes the ratio of idle times, cumulated over all processors and n gives the number of tasks.

The algorithm can be implemented to run in time \(\mathcal{O}(n \log n)\) and even in the worst case, an asymptotic approximation ratio of 2 is guaranteed. Experiments yield an average waste proportional to n 0.70, indicating that the above upper bound on the expected waste is almost tight.

While such average-case analyses are a classical topic of Bin Packing, to the best of our knowledge, this is the first result dealing with a theoretical average-case analysis for this scheduling problem, which was described by Liu and Layland more than 35 years ago and has received a lot of attention, especially in the real-time and embedded-systems community.


Schedule Problem Periodic Task Multiprocessor Schedule Item Size Relative Deadline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM 20(1), 46–61 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Lehoczky, J.P., Sha, L., Ding, Y.: The rate monotonic scheduling algorithm: Exact characterization and average case behavior. In: IEEE Real-Time Systems Symposium (1989)Google Scholar
  3. 3.
    Lehoczky, J.P.: Fixed priority scheduling of periodic task sets with arbitrary deadlines. In: IEEE Real-Time Systems Symposium, pp. 201–213 (1990)Google Scholar
  4. 4.
    Korst, J., Aarts, E.H.L., Lenstra, J.K., Wessels, J.: Periodic multiprocessor scheduling. In: Aarts, E.H.L., van Leeuwen, J., Rem, M. (eds.) PARLE 1991. LNCS, vol. 505, pp. 166–178. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  5. 5.
    Audsley, A.N., Burns, A., Richardson, M., Tindell, K.: Applying new scheduling theory to static priority pre-emptive scheduling. Software Engineering Journal, 284–292 (1993)Google Scholar
  6. 6.
    Oh, Y., Son, S.H.: Allocating fixed-priority periodic tasks on multiprocessor systems. Real-Time Syst. 9(3), 207–239 (1995)CrossRefGoogle Scholar
  7. 7.
    Davari, S., Dhall, S.K.: On-line algorithms for allocating periodic-time-critical tasks on multiprocessor systems. Informatica (Slovenia) 19(1) (1995)Google Scholar
  8. 8.
    Liebeherr, J., Burchard, A., Oh, Y., Son, S.H.: New strategies for assigning real-time tasks to multiprocessor systems. IEEE Trans. Comput. 44(12), 1429–1442 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Korst, J., Aarts, E., Lenstra, J.K.: Scheduling periodic tasks with slack. INFORMS J. Comput. 9(4), 351–362 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Oh, D.I., Baker, T.P.: Utilization bounds for N-processor rate monotone scheduling with static processor assignment. Real-Time Systems (1998)Google Scholar
  11. 11.
    Baruah, S., Goossens, J.: Scheduling real-time tasks: Algorithms and complexity. In: Leung, J.Y.T. (ed.) Handbook of Scheduling — Algorithms, Models, and Performance Analysis. Computer and Information Science Series, vol. 28. Chapman & Hall/CRC, Boca Raton (2004)Google Scholar
  12. 12.
    Fisher, N., Baruah, S.: A fully polynomial-time approximation scheme for feasibility analysis in static-priority systems with arbitrary relative deadlines. In: ECRTS 2005. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  13. 13.
    Leung, J., Kelly, L., Anderson, J.H.: Handbook of Scheduling: Algorithms, Models, and Performance Analysis. CRC Press, Inc., Boca Raton (2004)Google Scholar
  14. 14.
    Garey, M.R., Graham, R.L., Johnson, D.S., Yao, A.C.C.: Resource constrained scheduling as generalized bin packing. J. Combin. Theory Ser. A 21, 257–298 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Johnson, D.S.: Near-optimal bin packing algorithms. PhD thesis, MIT, Cambridge, MA (1973)Google Scholar
  16. 16.
    Shor, P.W.: The average-case analysis of some on-line algorithms for bin packing. In: FOCS 1984, Singer Island, FL. IEEE, Los Alamitos (1984)Google Scholar
  17. 17.
    Frederickson, G.N.: Probabilistic analysis for simple one- and two-dimensional bin packing algorithms. Information Processing Letters 11(4/5), 156–161 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Knödel, W.: A bin packing algorithm with complexity O(n logn) and performance 1 in the stochastic limit. In: Gruska, J., Chytil, M.P. (eds.) MFCS 1981. LNCS, vol. 118, pp. 369–378. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  19. 19.
    Lueker, G.S.: An average-case analysis of bin packing with uniformly distributed item sizes. Technical Report 181, Dept. Inf. and CS, University of California at Irvine (1982)Google Scholar
  20. 20.
    Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1 + ε in linear time. Combinatorica 1(4), 349–355 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: FOCS 1982, pp. 312–320. IEEE, Los Alamitos (1982)Google Scholar
  22. 22.
    Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin-packing—an updated survey. In: Algorithm design for computer system design. CISM Courses and Lectures, vol. 284, pp. 49–106. Springer, Vienna (1984)Google Scholar
  23. 23.
    Eisenbrand, F., Rothvoß, T.: Static-priority Real-time Scheduling: Response Time Computation is NP-hard. In: IEEE Real-Time Systems Symposium, RTSS (2008)Google Scholar
  24. 24.
    Eisenbrand, F., Rothvoß, T.: A PTAS for static priority real-time scheduling with resource augmentation. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 246–257. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Coffman, E.G.J., So, K., Hofri, M., Yao, A.C.: A stochastic model of bin-packing. Inf. Control 44, 105–115 (1980)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andreas Karrenbauer
    • 1
  • Thomas Rothvoß
    • 1
  1. 1.Institute of MathematicsEPFLLausanneSwitzerland

Personalised recommendations