Fast Subgroup Discovery for Continuous Target Concepts

  • Martin Atzmueller
  • Florian Lemmerich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5722)

Abstract

Subgroup discovery is a flexible data mining method for a broad range of applications. It considers a given property of interest (target concept), and aims to discover interesting subgroups with respect to this concept. In this paper, we especially focus on the handling of continuous target variables and describe an approach for fast and efficient subgroup discovery for such target concepts. We propose novel formalizations of effective pruning strategies for reducing the search space, and we present the SD-Map* algorithm that enables fast subgroup discovery for continuous target concepts. The approach is evaluated using real-world data from the industrial domain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gamberger, D., Lavrac, N.: Expert-Guided Subgroup Discovery: Methodology and Application. Journal of Artificial Intelligence Research 17, 501–527 (2002)MATHGoogle Scholar
  2. 2.
    Lavrac, N., Kavsek, B., Flach, P., Todorovski, L.: Subgroup Discovery with CN2-SD. Journal of Machine Learning Research 5, 153–188 (2004)MathSciNetGoogle Scholar
  3. 3.
    Atzmueller, M., Puppe, F., Buscher, H.P.: Exploiting Background Knowledge for Knowledge-Intensive Subgroup Discovery. In: Proc. 19th Intl. Joint Conference on Artificial Intelligence (IJCAI 2005), Edinburgh, Scotland, pp. 647–652 (2005)Google Scholar
  4. 4.
    Jorge, A.M., Pereira, F., Azevedo, P.J.: Visual interactive subgroup discovery with numerical properties of interest (ISI, ISIProc). In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds.) DS 2006. LNCS (LNAI), vol. 4265, pp. 301–305. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Wrobel, S.: An Algorithm for Multi-Relational Discovery of Subgroups. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Aumann, Y., Lindell, Y.: A Statistical Theory for Quantitative Association Rules. Journal of Intelligent Information Systems 20(3), 255–283 (2003)CrossRefGoogle Scholar
  7. 7.
    Atzmueller, M., Puppe, F.: SD-Map – A Fast Algorithm for Exhaustive Subgroup Discovery. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 6–17. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Klösgen, W.: Explora: A Multipattern and Multistrategy Discovery Assistant. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 249–271. AAAI Press, Menlo Park (1996)Google Scholar
  9. 9.
    Grosskreutz, H., Rüping, S., Wrobel, S.: Tight optimistic estimates for fast subgroup discovery. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 440–456. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns Without Candidate Generation. In: Chen, W., Naughton, J., Bernstein, P.A. (eds.) 2000 ACM SIGMOD Intl. Conference on Management of Data, pp. 1–12. ACM Press, New York (2000)CrossRefGoogle Scholar
  11. 11.
    Klösgen, W.: Applications and Research Problems of Subgroup Mining. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1999. LNCS, vol. 1609, pp. 1–15. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Grosskreutz, H., Rüping, S., Shaabani, N., Wrobel, S.: Optimistic estimate pruning strategies for fast exhaustive subgroup discovery. Technical report, Fraunhofer Institute IAIS (2008), http://publica.fraunhofer.de/eprints/urn:nbn:de:0011-n-723406.pdf
  13. 13.
    Newman, D., Hettich, S., Blake, C., Merz, C.: UCI Repository of Machine Learning Databases (1998), http://www.ics.uci.edu/~mlearn/mlrepository.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Martin Atzmueller
    • 1
  • Florian Lemmerich
    • 1
  1. 1.Department of Computer Science VIUniversity of WürzburgWürzburgGermany

Personalised recommendations