Cryptography is the backbone upon which modern security has been established. For authentication, conventional cryptography depends on either secret knowledge such as passwords or possession of tokens. The fundamental problem of such mechanisms is that they cannot authenticate genuine users. Biometrics such as fingerprints, faces, irises, etc., are considered as uniquely linked to individuals and hence are powerful in authenticating people. However, biometric systems themselves are not attackproof and are vulnerable against several types of attacks. An emerging solution is to integrate the authentication feature of biometrics and the core function of conventional cryptography, called biocryptography. This chapter is designed to provide a comprehensive reference for this topic. The work is based on many publications which includes our own work in this field. This chapter also provides suitable background knowledge so that it is not only suitable for a research reference but also for a textbook targeting senior undergraduates and postgraduates with a major in security.

The organization of this chapter is as follows. Section 7.1 provides background materials on cryptography. Section 7.2 introduces the concept of biometrics technology and its applications. Section 7.3 discusses the issue of protecting biometric systems using bio-cryptography techniques. Section 7.4 is dedicated to conclusions.


Encryption Algorithm Advance Encryption Standard Equal Error Rate Biometric System False Rejection Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 7.1.
    M. McLoone, J.V. McCanny: System-on-Chip Architectures and Implementations for Private-Key Data Encryption (Plenum Publishing, USA 2003)Google Scholar
  2. 7.2.
    W. Stallings: Cryptography and Network Security Principles and Practice, 3rd edn. (Prentice Hall, Upper Saddle River, NJ 2003)Google Scholar
  3. 7.3.
    D. Luciano, G. Prichett: Cryptology: From Caesar Ciphers to Public-Key Cryptosystems, Coll. Math. J. 18(1), 2–17 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 7.4.
  5. 7.5.
  6. 7.6.
  7. 7.7.
    Details of the Data Encryption Standard:
  8. 7.8.
    J. Daemen, V. Rijmen: Rijndael: The Advanced Encryption Standard, Dr. Dobb’s J. 26(3), 137–139 (2001)Google Scholar
  9. 7.9.
    J. Weise: Public Key Infrastructure Overview, Sun BluePrints™ OnLine (August 2001),
  10. 7.10.
  11. 7.11.
    P. Montgomery: Preliminary Design of Post-Sieving Processing for RSA-768, CADO workshop on integer factorization (October 2008)Google Scholar
  12. 7.12.
    A.K. Jain, S. Pankanti: A touch of money, IEEE Spectr. 43(7), 14–19 (2006)CrossRefGoogle Scholar
  13. 7.13.
    K.D. Mitnick, W.L. Simon, S. Wozniak: The Art of Deception: Controlling the Human Element of Security (Wiley, Canada 2002)Google Scholar
  14. 7.14.
    D.V. Klien: Foiling the Cracker: A Survey of, and Improvements to Unix Password Security, Proc. 2nd USENIX Workshop on Security (1990) pp. 5–14Google Scholar
  15. 7.15.
    D. Maltoni, D. Maio, A.K. Jain, S. Prabhakar: Handbook of Fingerprint Recognition (Springer, New York 2003)zbMATHGoogle Scholar
  16. 7.16.
    C.P.F. Bergadano, D. Gunetti: User authentication through keystroke dynamics, ACM transactions on information and system security (2002)Google Scholar
  17. 7.17.
    J.L. Wayman: Fundamentals of biometric authentication technologies, Int. J. Image Graph. 1(1), 93–113 (2001)CrossRefGoogle Scholar
  18. 7.18.
    S.H. Bazen, G. Verwaaijen: A correlation-based fingerprint verification system, ProRISC 2000 Workshop on Circuits, Systems and Signal Processing (2000)Google Scholar
  19. 7.19.
    K.A. Toh, J. Kim, S. Lee: Maximizing area under ROC curve for biometric scores fusion, Pattern Recognit. 41(11), 3373–3392 (2008)zbMATHCrossRefGoogle Scholar
  20. 7.20.
    S. Chikkerur: Online fingerprint verification,
  21. 7.21.
    Y.W. Sen Wang: Fingerprint enhancement in the singular point area, IEEE Signal Process. Lett. 11(1), 16–19 (2004)CrossRefGoogle Scholar
  22. 7.22.
    K.A. Toh: Training a reciprocal-sigmoid classifier by feature scaling-space, Mach. Learn. 65(1), 273–308 (2006)CrossRefMathSciNetGoogle Scholar
  23. 7.23.
    K.A. Toh, H.L. Eng: Between classification-error approximation and weighted least-squares learning, IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 658–669 (2008)CrossRefGoogle Scholar
  24. 7.24.
    A. Jain, H. Lin, R. Bolle: On-line fingerprint verification, IEEE Trans. Pattern Anal. Mach. Intell. 19(4), 302–314 (1997)CrossRefGoogle Scholar
  25. 7.25.
    A.M. Bazen, S.H. Gerez: Thin-plate spline modelling of elastic deformations in fingerprints, Proc. 3rd IEEE Benelux Signal Processing Symposium, Leuven (2002)Google Scholar
  26. 7.26.
    X. Jiang, W. Yau: Fingerprint minutiae matching based on the local and global structures, Proc. 15th Int. Conf. on Pattern Recognition, Washington: IEEE Computer Society (2000)Google Scholar
  27. 7.27.
    W.Y. Zhang Wang: Core-based structure matching algorithm of fingerprint verification, Proc. ICPR 2002, IEEE, Vol. 1 (2002) pp. 70–74Google Scholar
  28. 7.28.
    A.M. Bazen, G.T.B. Verwaaijen, S.H. Gerez, L.P.J. Veelenturf, B.J. van der Zwaag: A correlation-based fingerprint verification system, 11th Annual Workshop on Circuits Systems and Signal Processing (2000)Google Scholar
  29. 7.29.
    K. Venkataramani, B.K.V. Kumar: Fingerprint Verification Using Correlation Filters. In: AVBPA, LNCS, Vol. 2688, ed. by J. Kittler, M.S. Nixon (Springer, Berlin 2003) pp. 886–894Google Scholar
  30. 7.30.
    Y. Wang, J. Hu, D. Philip: A fingerprint orientation model based on 2D Fourier expansion (FOMFE) and its application to singular-point detection and fingerprint indexing, IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 573–585 (2007)CrossRefGoogle Scholar
  31. 7.31.
    N.K. Ratha, S. Chikkerur, J.H. Connell, R.M. Bolle: Generating cancelable fingerprint templates, IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 561–572 (2007)CrossRefGoogle Scholar
  32. 7.32.
    Z.J. Hou, J.Li, H.K. Lam, T.P. Chen, H.L. Wang, W.Y. Yau: Fingerprint orientation analysis with topological modeling, ICPR (2008)Google Scholar
  33. 7.33.
    H.K. Lam, Z.J. Hou, W.Y. Yau, T.P. Chen, J.Li, K.Y. Sim: Reference point detection for arch type fingerprints, Int. Conference on Biometrics (ICB) (2009)Google Scholar
  34. 7.34.
    H. K. Lam, Z. J. Hou, W. Y. Yau, T. P. Chen, J. Li: A systematic topological method for fingerprint singular point detection, 10th International Conf. on Control, Automation, Robotics and Vision, IEEE ICARCV (2008)Google Scholar
  35. 7.35.
    S. Yang, I. Verbauwhede: Automatic Secure Fingerprint Verification System Based on Fuzzy Vault Scheme, Proc. IEEE ICASSP, Philadelphia, Vol. 5 (2005) pp. 609–612Google Scholar
  36. 7.36.
    U. Uludag, A.K. Jain: Securing Fingerprint Template: Fuzzy Vault With Helper Data, Proceedings of CVPR Workshop on Privacy Research In Vision, New York (2006) p. 163Google Scholar
  37. 7.37.
    K. Nandakumar, A.K. Jain, S. Pankanti: Fingerprint-based fuzzy vault: implementation and performance, IEEE Trans. Inf. Forensics Secur. 2(4), 744–757 (2007)CrossRefGoogle Scholar
  38. 7.38.
    A. Ross, A. Jain, J. Reisman: A Hybrid Fingerprint Matcher, 16th Int. Conference on Pattern Recognition (2002)Google Scholar
  39. 7.39.
    K. Nandakumar: Multibiometric Systems: Fusion Strategies and Template Security. Ph.D. Thesis (Michigan State University, East Lansing, MI, USA 2008)Google Scholar
  40. 7.40.
    A.K. Jain, S. Pankanti, S. Prabhakar, L. Hong, A. Ross: Biometrics: A Grand Challenge, Proc. Int. Conference on Pattern Recognition (ICPR), Cambridge, UK, Vol. 2 (2004) pp. 935–942Google Scholar
  41. 7.41.
    N.K. Ratha, J.H. Connell, R.M. Bolle: An analysis of minutiae matching strength, Proc. AVBPA 2001, 3rd Int. Conference on Audio- and Video-Based Biometric Person Authentication (2001) pp. 223–228Google Scholar
  42. 7.42.
    U. Uludag, S. Pankanti, S. Prabhakar, A.K. Jain: Biometric Cryptosystems: Issues and Challenges, Proceedings of the IEEE, Special Issue on Enabling Security Technologies for Digital Rights Management, Vol. 92, No. 6 (2004)Google Scholar
  43. 7.43.
    D. Brin: Transparent Society: Will Technology Force Us to Choose Between Privacy and Freedom (Perseus Books, New York 1998)Google Scholar
  44. 7.44.
    R. Cappelli, A. Lumini, D. Maio, D. Maltoni: Fingerprint image reconstruction from standard templates, IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1489–1503 (2007)CrossRefGoogle Scholar
  45. 7.45.
    A.K. Ross, J. Shah, A.K. Jain: From templates to images: reconstructing fingerprints from minutiae points, IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 544–560 (2007)CrossRefGoogle Scholar
  46. 7.46.
    A. Adler: Images can be Regenerated from Quantized Biometric Match Score Data, Proc. Canadian Conference on Electrical and Computer Engineering, Niagara Falls (2004) pp. 469–472Google Scholar
  47. 7.47.
    A.B.J. Teoh, K.-A. Toh, W.K. Yip: 2N Discretisation of BioPhasor in Cancellable Biometrics, Proc. 2nd Int. Conference on Biometrics, Seoul (2007) pp. 435–444Google Scholar
  48. 7.48.
    A.B.J. Teoh, A. Goh, D.C.L. Ngo: Random multispace quantization as an analytic mechanism for biohashing of biometric and random identity inputs, IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1892–1901 (2006)CrossRefGoogle Scholar
  49. 7.49.
    C.S. Chin, A.B. J Teoh, D.C.L. Ngo: High security iris verification system based on random secret integration, Comput. Vis. Image Underst. 102(2), 169–177 (2006)CrossRefGoogle Scholar
  50. 7.50.
    T. Connie, A.B. J Teoh, M. Goh, D.C.L. Ngo: PalmHashing: A novel approach for cancelable biometrics, Inf Process. Lett. 93(1), 1–5 (2005)CrossRefMathSciNetGoogle Scholar
  51. 7.51.
    A. Juels, M. Wattenberg: A Fuzzy Commitment Scheme, Proc. 6th ACM Conference on Computer and Communications Security, Singapore (1999) pp. 28–36Google Scholar
  52. 7.52.
    A. Juels, M. Sudan: A Fuzzy Vault Scheme, Proc. IEEE Int. Symposium on Information Theory, Lausanne (2002) p. 408Google Scholar
  53. 7.53.
    Y.-J. Chang, W. Zhang, T. Chen: Biometrics Based Cryptographic Key Generation, Proc. IEEE Conference on Multimedia and Expo, Taipei, Vol. 3 (2004) pp. 2203–2206Google Scholar
  54. 7.54.
    C. Vielhauer, R. Steinmetz, A. Mayerhofer: Biometric Hash Based on Statistical Features of Online Signatures, Proc. 16th Int. Conference on Pattern Recognition, Quebec, Vol. 1 (2002) pp. 123–126Google Scholar
  55. 7.55.
    Y. Dodis, R. Ostrovsky, L. Reyzin, A. Smith: Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data, Technical Report 235, Cryptology ePrint Archive (February 2006)Google Scholar
  56. 7.56.
    U. Uludag, S. Pankanti, A.K. Jain: Fuzzy Vault for Fingerprints, Proc. Audio- and Video-based Biometric Person Authentication, Rye Town (2005) pp. 310–319Google Scholar
  57. 7.57.
    T. Clancy, D. Lin, N. Kiyavash: Secure Smartcard-Based Fingerprint Authentication, Proc. ACM SIGMM Workshop on Biometric Methods and Applications, Berkley (2003) pp. 45–52Google Scholar
  58. 7.58.
    Y. Chung, D. Moon, S. Lee, S. Jung, T. Kim, D. Ahn: Automatic alignment of fingerprint features for fuzzy fingerprint vault. In: CISC 2005, Beijing, LNCS, Vol. 3822 (Springer, Berlin 2005) pp. 358–369Google Scholar
  59. 7.59.
    D. Ahn, et al.: Specification of ETRI Fingerprint Database(in Korean), Technical Report – ETRI (2002)Google Scholar
  60. 7.60.
    H. Wolfson, I. Rigoutsos: Geometric hashing: an overview, IEEE Comput. Sci. Eng. 4(4), 10–21 (1997)CrossRefGoogle Scholar
  61. 7.61.
    A. Malickas, R. Vitkus: Fingerprint registration using composite features consensus, Informatica 10(4), 389–402 (1999)Google Scholar
  62. 7.62.
    K. Xi, J. Hu: Biometric Mobile Template Protection: A Composite Feature based Fingerprint Fuzzy Vault, IEEE Int. Conference on Communication (ICC), Germany (2009)Google Scholar
  63. 7.63.
    K. Xi, J. Hu: A Dual Layer Structure Check (DLSC) Fingerprint Verification Scheme Designed for Biometric Mobile Template Protection, 4th IEEE Conference on Industrial Electronics and Applications (ICIEA), China (2009) Google Scholar
  64. 7.64.
    D.P.E.K. Mital Teoh: An automated matching technique for fingerprint identification, Proc. KES, Vol. 1 (1997) pp. 142–147Google Scholar
  65. 7.65.
    A. Kisel, A. Kochetkov, J. Kranauskas: Fingerprint minutiae matching without global alignment using local structures, Informatica 19(1), 31–44 (2008)zbMATHGoogle Scholar
  66. 7.66.
    J. Jeffers, A. Arakala: Minutiae-Based Structures for A Fuzzy Vault, Biometric Consortium Conference, 2006 Biometrics Symposium (2006) pp. 1–6Google Scholar
  67. 7.67.
    J. Hu: Mobile Fingerprint Template Protection: Progress and Open issues, invited session on pattern analysis and biometrics, 3rd IEEE Conference on Industrial Electronics and Applications, Singapore (June 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kai Xi
    • 1
  • Jiankun Hu
    • 1
  1. 1.School of Computer Science and ITRMIT UniversityMelbourneAustralia

Personalised recommendations