(t,m,s)-Nets and Maximized Minimum Distance, Part II

  • Leonhard GrünschloßEmail author
  • Alexander Keller
Conference paper


The quality parameter t of (t,m,s)-nets controls extensive stratification properties of the generated sample points. However, the definition allows for points that are arbitrarily close across strata boundaries. We continue the investigation of (t,m,s)-nets under the constraint of maximizing the mutual distance of the points on the unit torus and present two new constructions along with algorithms. The first approach is based on the fact that reordering (t,s)-sequences can result in (t,m,s+1)-nets with varying toroidal distance, while the second algorithm generates points by permutations instead of matrices.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cook, R., Carpenter, L., Catmull, E.: The Reyes image rendering architecture. SIGGRAPH Computer Graphics 21(4), 95–102 (1987) CrossRefGoogle Scholar
  2. 2.
    Dammertz, S., Keller, A.: Image synthesis by rank-1 lattices. In: A. Keller, S. Heinrich, H. Niederreiter (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 217–236. Springer (2008) Google Scholar
  3. 3.
    Faure, H.: Discrépance de suites associées à un système de numération (en dimension s). Acta Arithmetica 41(4), 337–351 (1982) zbMATHMathSciNetGoogle Scholar
  4. 4.
    Faure, H.: Discrepancy and diaphony of digital (0,1)-sequences in prime base. Acta Arithmetica 117, 125–148 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Faure, H., Tezuka, S.: Another random scrambling of digital (t,s)-sequences. In: K. Fang, F. Hickernell, H. Niederreiter (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 242–256, Springer-Verlag, Berlin (2002) Google Scholar
  6. 6.
    Grünschloß, L., Hanika, J., Schwede, R., Keller, A.: (t,m,s)-nets and maximized minimum distance. In: A. Keller, S. Heinrich, H. Niederreiter (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 397–412. Springer (2008) Google Scholar
  7. 7.
    Hofer, R., Larcher, G.: On existence and discrepancy of certain digital Niederreiter-Halton sequences (2009). To appear in Acta Arithmetica Google Scholar
  8. 8.
    Keller, A.: Myths of computer graphics. In: H. Niederreiter (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 217–243. Springer (2006) Google Scholar
  9. 9.
    Kollig, T., Keller, A.: Efficient multidimensional sampling. Computer Graphics Forum 21(3), 557–563 (2002) CrossRefGoogle Scholar
  10. 10.
    Larcher, G., Pillichshammer, F.: Walsh series analysis of the L 2-discrepancy of symmetrisized point sets. Monatsheft Mathematik 132, 1–18 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Larcher, G., Pillichshammer, F.: Sums of distances to the nearest integer and the discrepancy of digital nets. Acta Arithmetica 106, 379–408 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia (1992) zbMATHGoogle Scholar
  13. 13.
    Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Implementation, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2004) Google Scholar
  14. 14.
    Sedgewick, R.: Permutation generation methods. ACM Computing Surveys 9(2), 137–164 (1977) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Sobol’, I.: On the distribution of points in a cube and the approximate evaluation of integrals. Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki 7(4), 784–802 (1967) MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.GmbHBerlinGermany

Personalised recommendations