Advertisement

On the Complexity of Reliable Root Approximation

  • Michael Kerber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5743)

Abstract

This work addresses the problem of computing a certified ε-approximation of all real roots of a square-free integer polynomial. We proof an upper bound for its bit complexity, by analyzing an algorithm that first computes isolating intervals for the roots, and subsequently refines them using Abbott’s Quadratic Interval Refinement method. We exploit the eventual quadratic convergence of the method. The threshold for an interval width with guaranteed quadratic convergence speed is bounded by relating it to well-known algebraic quantities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, J.: Quadratic Interval Refinement for Real Roots. Poster presented at the 2006 Int. Symp. on Symb. and Alg. Comp, ISSAC 2006 (2006), http://www.dima.unige.it/~abbott/
  2. 2.
    Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. In: Algorithms and Computation in Mathematics, 2nd edn., vol. 10. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Brent, R.: Algorithms for Minimization without Derivatives, ch. 4. Prentice-Hall, Englewood Cliffs (1973)zbMATHGoogle Scholar
  4. 4.
    Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and Monographs in Symbolic Computation. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Collins, G.E., Akritas, A.G.: Polynomial Real Root Isolation Using Descartes’ Rule of Signs. In: Jenks, R.D. (ed.) SYMSAC, pp. 272–275. ACM Press, Yorktown Heights (1976)CrossRefGoogle Scholar
  6. 6.
    Collins, G.E., Loos, R.: Real zeroes of polynomials. In: Computer algebra: symbolic and algebraic computation, 2nd edn., pp. 83–94. Springer, New York (1983)CrossRefGoogle Scholar
  7. 7.
    Dekker, T.: Finding a zero by means of successive linear interpolation. In: Dejon, B., Henrici, P. (eds.) Constructive Aspects of the Fundamental Theorem of Algebra (1969)Google Scholar
  8. 8.
    Diochnos, D.I., Emiris, I.Z., Tsigaridas, E.P.: On the complexity of real solving bivariate systems. In: ISSAC 2007: Proceedings of the 2007 international symposium on Symbolic and algebraic computation, pp. 127–134. ACM, New York (2007)CrossRefGoogle Scholar
  9. 9.
    Du, Z., Sharma, V., Yap, C.: Amortized Bound for Root Isolation via Sturm Sequences. In: Proceedings of the International Workshop on Symbolic-Numeric Computation, SNC 2007 (2007)Google Scholar
  10. 10.
    Eigenwillig, A., Kerber, M.: Exact and efficient 2D-arrangements of arbitrary algebraic curves. In: Proc. of the nineteenth annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 122–131 (2008)Google Scholar
  11. 11.
    Eigenwillig, A., Kerber, M., Wolpert, N.: Fast and Exact Geometric Analysis of Real Algebraic Plane Curves. In: Brown, C.W. (ed.) Proocedings of the 2007 International Symposium on Symbolic and Algebraic Compuation, ISSAC 2007 (2007)Google Scholar
  12. 12.
    Eigenwillig, A., Sharma, V., Yap, C.: Almost Tight Recursion Tree Bounds for the Descartes Method. In: Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation, pp. 71–78 (2006)Google Scholar
  13. 13.
    Emiris, I.Z., Hemmer, M., Karavelas, M., Mourrain, B., Tsigaridas, E.P., Zafeirakopoulos, Z.: Experimental evaluation and cross-benchmarking of univariate real solvers. Rapport de recherche EMIRIS:2008:INRIA-00340887:1, INRIA, Sophia Antipolis, France (2008)Google Scholar
  14. 14.
    Johnson, J.R.: Algorithms for Real Root Isolation. In: Caviness and Johnson [4] (1998)Google Scholar
  15. 15.
    Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7, 281–292 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sharma, V.: Complexity of real root isolation using continued fractions. Theoretical Computer Science 409, 292–310 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Yap, C.K.: Fundamental Problems in Algorithmic Algebra. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael Kerber
    • 1
  1. 1.Max-Planck Institut für InformatikSaarbrückenGermany

Personalised recommendations