Parallel and Adaptive Methods for Fluid-Structure-Interactions

  • Josef Ballmann
  • Marek Behr
  • Kolja Brix
  • Wolfgang Dahmen
  • Christoph Hohn
  • Ralf Massjung
  • Sorana Melian
  • Siegfried Müller
  • Gero Schieffer
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 109)

Abstract

The new flow solver Quadflow, developed within the SFB 401, has been designed for investigating flows around airfoils and simulating the interaction of the structural dynamics and aerodynamics. This article addresses the following issues arising in this context. After identifying proper coupling conditions and settling the well-posedness of the resulting coupled fluid-structure problem, suitable strategies for successively applying flow and structure solvers needed to be developed that give rise to a sufficiently close coupling of both media. Based on these findings the overall efficiency of numerical simulations hinges, for the current choice of structural models, on the efficiency of the flow solver. In addition to the multiscale-based grid adaptation concepts, proper parallelization concepts are needed to realize for such complex problems an acceptable computational performance on parallel architectures. Since the parallelization of dynamically varying adaptive discretizations is by far not straightforward we will mainly concentrate on this issue in connection with the above mentioned multiscale adaptivity concepts. In particular, we outline the way the multiscale library has been parallelized via MPI for distributed memory architectures. To ensure a proper scaling of the computational performance with respect to CPU time and memory, the load of data has to be well-balanced and communication between processors has to be minimized.We point out how to meet these requirements by employing the concept of space-filling curves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amdahl, G.: Validity of the single processor approach to achieving large-scale computing capabilities. In: AFIPS Conference Proceedings, vol. 30, pp. 483–485 (1967)Google Scholar
  2. 2.
    Balay, S., Buschelmann, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc web page Technical report (2001), http://www.mcs.anl.gov/petsc
  3. 3.
    Balay, S., Buschelmann, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Technical report anl-95/11 - revision 2.1.5, Argonne National Laboratory (2004)Google Scholar
  4. 4.
    Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163–202. Birkhäuser Press, Basel (1997)Google Scholar
  5. 5.
    Bramkamp, F.: Unstructured h-Adaptive Finite-Volume Schemes for Compressible Viscous Fluid Flow. PhD thesis, RWTH Aachen (2003), http://sylvester.bth.rwth-aachen.de/dissertationen/2003/255/03_255.pdf
  6. 6.
    Bramkamp, F., Gottschlich-Müller, B., Hesse, M., Lamby, P., Müller, S., Ballmann, J., Brakhage, K.-H., Dahmen, W.: H-adaptive Multiscale Schemes for the Compressible Navier–Stokes Equations — Polyhedral Discretization, Data Compression and Mesh Generation. In: Ballmann, J. (ed.) Flow Modulation and Fluid-Structure-Interaction at Airplane Wings. Numerical Notes on Fluid Mechanics, vol. 84, pp. 125–204. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Bramkamp, F., Lamby, P., Müller, S.: An adaptive multiscale finite volume solver for unsteady an steady state flow computations. J. Comp. Phys. 197(2), 460–490 (2004)MATHCrossRefGoogle Scholar
  8. 8.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press, Cambridge (2001)MATHGoogle Scholar
  9. 9.
    Dowell, E.H.: Aeroelasticity of Plates and Shells. Noordhoff International Publishing (1975)Google Scholar
  10. 10.
    Edwards, J., Liou, M.S.: Low-diffusion flux-splitting methods for flows at all speeds. AIAA Journal 36, 1610–1617 (1998)CrossRefGoogle Scholar
  11. 11.
    Gilbert, E.N.: Gray codes and the paths on the n-cube. Bell System Tech. J. 37, 815–826 (1958), http://www.math.uwaterloo.ca/~wgilbert/Research/HilbertCurve/HilbertCurve.html MathSciNetGoogle Scholar
  12. 12.
    Gropp, W., Lusk, E., Skjellum, A.: Using MPI - Portable Parallel Programming with the Message-Passing Interface, 2nd edn. MIT Press, Cambridge (1999)Google Scholar
  13. 13.
    Gropp, W., Lusk, E., Skjellum, A.: Using MPI-2 - Advanced Features of the Message-Passing Interface, 2nd edn. MIT Press, Cambridge (1999)Google Scholar
  14. 14.
    Jeong, J., Hussain, F.: On the identification of a vortex. Journal of Fluid Mechanics 285, 69–94 (1995)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Karypis, G., Kumar, V.: Multilevel algorithms for multi-constraint graph partitioning. Supercomputing (1998)Google Scholar
  16. 16.
    Karypis, G., Kumar, V.: A parallel algorithm for multilevel graph partitioning and sparse matrix ordering. Journal of Parallel and Distributed Computing 48, 71–85 (1998)CrossRefGoogle Scholar
  17. 17.
    Lamby, P.: Parametric Multi-Block Grid Generation and Application to Adaptive Flow Simulations. PhD thesis, RWTH Aachen (2007), http://darwin.bth.rwth-aachen.de/opus3/volltexte/2007/1999/pdf/Lamby_philipp.pdf
  18. 18.
    Massjung, R.: Discrete conservation and coupling strategies in nonlinear aeroelasticity. Comput. Methods Appl. Mech. Engrg. 196, 91–102 (2006)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Müller, S.: Adaptive Multiscale Schemes for Conservation Laws. Lecture Notes on Computational Science and Engineering, vol. 27. Springer, Heidelberg (2002)Google Scholar
  20. 20.
    Müller, S., Voss, A.: A Manual for the Template Class Library igpm_t_lib. IGPM–Report 197, RWTH Aachen (2000)Google Scholar
  21. 21.
    Pandya, S.A., Venkateswaran, S., Pulliam, T.H.: Implementation of preconditioned dual-time procedures in overflow. AIAA Paper 2003-0072 (2003)Google Scholar
  22. 22.
    Sagan, H.: Space-Filling Curves, 1st edn. Springer, New York (1994)MATHGoogle Scholar
  23. 23.
    Stroustrup, B.: The C + + Programming Language. Addison-Wesley, Reading (1997)Google Scholar
  24. 24.
    Voss, A.: Notes on adaptive grids in 2d and 3d part i: Navigating through cell hierarchies using cell identifiers. IGPM–Report 268, RWTH Aachen (2006)Google Scholar
  25. 25.
    Zumbusch, G.: Parallel multilevel methods. Adaptive mesh refinement and loadbalancing. In: Advances in Numerical Mathematics. Teubner, Wiesbaden (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Josef Ballmann
    • 3
  • Marek Behr
    • 2
  • Kolja Brix
    • 1
  • Wolfgang Dahmen
    • 1
  • Christoph Hohn
    • 3
  • Ralf Massjung
    • 1
  • Sorana Melian
    • 1
  • Siegfried Müller
    • 1
  • Gero Schieffer
    • 2
  1. 1.Institut für Geometrie und Praktische MathematikRWTH Aachen UniversityAachen
  2. 2.Lehrstuhl für Computergestützte Analyse Technischer SystemeRWTH Aachen UniversityAachen
  3. 3.Lehr- und Forschungsgebiet für MechanikRWTH Aachen UniversityAachen

Personalised recommendations