Advertisement

A General Testability Theory

  • Ismael Rodríguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5710)

Abstract

We present a general framework allowing to classify testing problems into five testability classes. Classes differ in the number of tests we must apply to precisely determine whether the system is correct or not. The conditions that enable/disable finite testability are analyzed. A general method to reduce a testing problem into another is presented. The complexity of finding complete test suites and measuring the suitability of incomplete suites is analyzed.

Keywords

Testing Problem Test Suite Computation Formalism Distinguishing Relation Mealy Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernot, G., Gaudel, M.-C., Marre, B.: Software testing based on formal specification: a theory and a tool. Software Engineering Journal 6, 387–405 (1991)CrossRefGoogle Scholar
  2. 2.
    Brinksma, E., Tretmans, J.: Testing transition systems: An annotated bibliography. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 187–195. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Do, H., Rothermel, G., Kinneer, A.: Prioritizing JUnit test cases: An empirical assessment and cost-benefits analysis. Empirical Software Engineering 11(1), 33–70 (2006)CrossRefGoogle Scholar
  4. 4.
    Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic execution techniques for test purpose definition. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS, vol. 3964, pp. 1–18. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Gaudel, M.-C.: Testing can be formal, too. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 82–96. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)zbMATHGoogle Scholar
  7. 7.
    Hierons, R.M.: Comparing test sets and criteria in the presence of test hypotheses and fault domains. ACM Trans. on Software Engineering and Methodology 11(4), 427–448 (2002)CrossRefGoogle Scholar
  8. 8.
    Hierons, R.M.: Verdict functions in testing with a fault domain or test hypotheses. In: ACM Transactions on Software Engineering and Methodology (2008) (to appear)Google Scholar
  9. 9.
    Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing 2(4), 225–231 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines: A survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)CrossRefGoogle Scholar
  11. 11.
    López, N., Núñez, M., Rodríguez, I.: Specification, testing and implementation relations for symbolic-probabilistic systems. Theoretical Computer Science 353(1–3), 228–248 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Merayo, M., Núñez, M., Rodríguez, I.: Extending EFSMs to specify and test timed systems with action durations and timeouts. IEEE Transactions on Computers 57(6), 835–844 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Petrenko, A.: Fault model-driven test derivation from finite state models: Annotated bibliography. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 196–205. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Rodríguez, I.: A general testability theory: Extended version (2006), http://kimba.mat.ucm.es/ismael/
  15. 15.
    Rodríguez, I., Merayo, M.G., Núñez, M.: \(\mathcal{HOTL}\): Hypotheses and observations testing logic. Journal of Logic and Algebraic Programming 74(2), 57–93 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Springintveld, J., Vaandrager, F., D’Argenio, P.R.: Testing timed automata. Theoretical Computer Science 254(1-2), 225–257 (2001); Previously appeared as Technical Report CTIT-97-17, University of Twente (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Stoelinga, M., Vaandrager, F.: A testing scenario for probabilistic automata. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 464–477. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Tretmans, J.: Testing concurrent systems: A formal approach. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 46–65. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ismael Rodríguez
    • 1
  1. 1.Universidad Complutense de MadridMadridSpain

Personalised recommendations