On the Relationship between π-Calculus and Finite Place/Transition Petri Nets

  • Roland Meyer
  • Roberto Gorrieri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5710)


We clarify the relationship between π-calculus and finite p/t Petri nets. The first insight is that the concurrency view to processes taken in [Eng96, AM02, BG09] and the structural view in [Mey09] are orthogonal. This allows us to define a new concurrency p/t net semantics that can be combined with the structural semantics in [Mey09]. The result is a more expressive mixed semantics, which translates precisely the so-called mixed-bounded processes into finite p/t nets. Technically, the translation relies on typing of restricted names. As second main result we show that mixed-bounded processes form the borderline to finite p/t nets. For processes just beyond this class reachability becomes undecidable and so no faithful translation into finite p/t nets exists.


Parallel Composition Structural Semantic Restricted Form Counter Machine Process Place 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AM02]
    Amadio, R., Meyssonnier, C.: On decidability of the control reachability problem in the asynchronous π-calculus. Nord. J. Comp. 9(1), 70–101 (2002)MathSciNetzbMATHGoogle Scholar
  2. [BG95]
    Busi, N., Gorrieri, R.: A Petri net semantics for π-calculus. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 145–159. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  3. [BG09]
    Busi, N., Gorrieri, R.: Distributed semantics for the π-calculus based on Petri nets with inhibitor arcs. J. Log. Alg. Prog. 78(1), 138–162 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [BGZ03]
    Busi, N., Gabbrielli, M., Zavattaro, G.: Replication vs. recursive definitions in channel based calculi. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 133–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. [BGZ04]
    Busi, N., Gabbrielli, M., Zavattaro, G.: Comparing recursion, replication, and iteration in process calculi. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 307–319. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. [Dam96]
    Dam, M.: Model checking mobile processes. Inf. Comp. 129(1), 35–51 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [DFS98]
    Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. [DKK08]
    Devillers, R., Klaudel, H., Koutny, M.: A compositional Petri net translation of general π-calculus terms. For. Asp. Comp. 20(4–5), 429–450 (2008)CrossRefzbMATHGoogle Scholar
  9. [EG99]
    Engelfriet, J., Gelsema, T.: Multisets and structural congruence of the pi-calculus with replication. Theor. Comp. Sci. 211(1-2), 311–337 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [EG04]
    Engelfriet, J., Gelsema, T.: A new natural structural congruence in the pi-calculus with replication. Acta Inf. 40(6), 385–430 (2004)MathSciNetzbMATHGoogle Scholar
  11. [Eng96]
    Engelfriet, J.: A multiset semantics for the pi-calculus with replication. Theor. Comp. Sci. 153(1-2), 65–94 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [FGMP03]
    Ferrari, G.-L., Gnesi, S., Montanari, U., Pistore, M.: A model-checking verification environment for mobile processes. ACM Trans. Softw. Eng. Methodol. 12(4), 440–473 (2003)CrossRefGoogle Scholar
  13. [Fok07]
    Fokkink, W.: Modelling Distributed Systems. Springer, Heidelberg (2007)Google Scholar
  14. [KKN06]
    Khomenko, V., Koutny, M., Niaouris, A.: Applying Petri net unfoldings for verification of mobile systems. In: Proc. of MOCA, Bericht FBI-HH-B-267/06, pp. 161–178. University of Hamburg (2006)Google Scholar
  15. [May84]
    Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM J. Comp. 13(3), 441–460 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [Mey08a]
    Meyer, R.: On boundedness in depth in the π-calculus. In: Proc. of IFIP TCS. IFIP, vol. 273, pp. 477–489. Springer, Heidelberg (2008)Google Scholar
  17. [Mey08b]
    Meyer, R.: Structural Stationarity in the π-calculus. PhD thesis, Department of Computing Science, University of Oldenburg (2008)Google Scholar
  18. [Mey09]
    Meyer, R.: A theory of structural stationarity in the π-calculus. Acta Inf. 46(2), 87–137 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Mil89]
    Milner, R.: Communication and concurrency. Prentice Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  20. [Mil99]
    Milner, R.: Communicating and Mobile Systems: the π-Calculus. CUP, Cambridge (1999)zbMATHGoogle Scholar
  21. [Min67]
    Minsky, M.: Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  22. [MKS09]
    Meyer, R., Khomenko, V., Strazny, T.: A practical approach to verification of mobile systems using net unfoldings. Fund. Inf. (to appear 2009)Google Scholar
  23. [MP95]
    Montanari, U., Pistore, M.: Checking bisimilarity for finitary π-calculus. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 42–56. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  24. [Pet08]
  25. [Pis99]
    Pistore, M.: History Dependent Automata. PhD thesis, Dipartimento di Informatica, Università di Pisa (1999)Google Scholar
  26. [SW01]
    Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. CUP, Cambridge (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Roland Meyer
    • 1
  • Roberto Gorrieri
    • 2
  1. 1.LIAFAParis Diderot University & CNRSFrance
  2. 2.Department of Computing ScienceUniversity of BolognaItaly

Personalised recommendations