Winning Regions of Pushdown Parity Games: A Saturation Method

  • Matthew Hague
  • C. -H. Luke Ong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5710)

Abstract

We present a new algorithm for computing the winning region of a parity game played over the configuration graph of a pushdown system. Our method gives the first extension of the saturation technique to the parity condition. Finite word automata are used to represent sets of pushdown configurations. Starting from an initial automaton, we perform a series of automaton transformations to compute a fixed-point characterisation of the winning region. We introduce notions of under-approximation (soundness) and over-approximation (completeness) that apply to automaton transitions rather than runs, and obtain a clean proof of correctness. Our algorithm is simple and direct, and it permits an optimisation that avoids an immediate exponential blow up.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking pushdown systems. In: INFINITY (1997)Google Scholar
  3. 3.
    Walukiewicz, I.: Pushdown processes: Games and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 62–74. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended abstract). In: FOCS 1991, pp. 368–377 (1991)Google Scholar
  5. 5.
    Esparza, J., Kučera, A., Schwoon, S.: Model-checking LTL with regular valuations for pushdown systems. In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 316–339. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Hague, M.: Saturation methods for global model-checking pushdown systems. PhD. Thesis, University of Oxford (2009)Google Scholar
  7. 7.
    Jones, N., Muchnick, S.: Even simple programs are hard to analyse. JACM 24, 338–350 (1977)CrossRefMATHGoogle Scholar
  8. 8.
    Piterman, N., Y. Vardi, M.: Global model-checking of infinite-state systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 387–400. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Serre, O.: Note on winning positions on pushdown games with ω-regular conditions. Information Processing Letters 85, 285–291 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Schwoon, S.: Model-checking Pushdown Systems. PhD thesis, Tech. Univ., Munich (2002)Google Scholar
  11. 11.
    Ball, T., Rajamani, S.K.: Bebop: A Symbolic Model Checker for Boolean Programs. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 113–130. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Ball, T., Rajamani, S.K.: The SLAM project: Debugging system software via static analysis. In: POPL, pp. 1–3 (2002)Google Scholar
  13. 13.
    Cachat, T.: Games on Pushdown Graphs and Extensions. PhD thesis, RWTH Aachen (2003)Google Scholar
  14. 14.
    Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their application to interprocedural dataflow analysis. Sci. Comput. Program. (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Matthew Hague
    • 1
  • C. -H. Luke Ong
    • 1
  1. 1.Computing LaboratoryOxford UniversityUK

Personalised recommendations