Reachability in Succinct and Parametric One-Counter Automata

  • Christoph Haase
  • Stephan Kreutzer
  • Joël Ouaknine
  • James Worrell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5710)

Abstract

One-counter automata are a fundamental and widely-studied class of infinite-state systems. In this paper we consider one-counter automata with counter updates encoded in binary—which we refer to as the succinct encoding. It is easily seen that the reachability problem for this class of machines is in PSpace and is NP-hard. One of the main results of this paper is to show that this problem is in fact in NP, and is thus NP-complete.

We also consider parametric one-counter automata, in which counter updates be integer-valued parameters. The reachability problem asks whether there are values for the parameters such that a final state can be reached from an initial state. Our second main result shows decidability of the reachability problem for parametric one-counter automata by reduction to existential Presburger arithmetic with divisibility.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Cerans, K.: Simulation is decidable for one-counter nets. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 253–268. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Proc. STOC 1993, pp. 592–601. ACM, New York (1993)Google Scholar
  3. 3.
    Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with lists are counter automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 517–531. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 577–588. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger arithmetic. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Cormen, T., Leiserson, C., Rivest, R.: Introduction to algorithms. MIT Press and McGraw-Hill (1990)Google Scholar
  7. 7.
    Demri, S.: Logiques pour la spécification et vérification. Mémoire d’habilitation, Université Paris 7 (2007)Google Scholar
  8. 8.
    Demri, S., Gascon, R.: The effects of bounding syntactic resources on Presburger LTL. In: Proc. TIME 2007. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)MATHGoogle Scholar
  10. 10.
    Ibarra, O.H., Dang, Z.: On two-way finite automata with monotonic counters and quadratic diophantine equations. Theor. Comput. Sci. 312(2-3), 359–378 (2004)CrossRefMATHGoogle Scholar
  11. 11.
    Ibarra, O.H., Dang, Z.: On the solvability of a class of diophantine equations and applications. Theor. Comput. Sci. 352(1), 342–346 (2006)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ibarra, O.H., Jiang, T., Trân, N., Wang, H.: New decidability results concerning two-way counter machines and applications. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS, vol. 700, pp. 313–324. Springer, Heidelberg (1993)Google Scholar
  13. 13.
    Jančar, P., Kučera, A., Moller, F., Sawa, Z.: DP lower bounds for equivalence-checking and model-checking of one-counter automata. Information Computation 188(1), 1–19 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kučera, A.: Efficient verification algorithms for one-counter processes. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, p. 317. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Lafourcade, P., Lugiez, D., Treinen, R.: Intruder deduction for AC-like equational theories with homomorphisms. In: Research Report LSV-04-16. LSV, ENS de Cachan (2004)Google Scholar
  16. 16.
    Leroux, J., Sutre, G.: Flat counter automata almost everywhere! In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Lipshitz, L.: The diophantine problem for addition and divisibility. Transaction of the American Mathematical Society 235, 271–283 (1976)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Mayr, E.W.: An algorithm for the general petri net reachability problem. In: Proc. STOC 1981, pp. 238–246. ACM, New York (1981)Google Scholar
  19. 19.
    Minsky, M.: Recursive unsolvability of post’s problem of ”tag” and other topics in theory of turing machines. Annals of Math. 74(3) (1961)Google Scholar
  20. 20.
    Xie, G., Dang, Z., Ibarra, O.H.: A solvable class of quadratic diophantine equations with applications to verification of infinite-state systems. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 668–680. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christoph Haase
    • 1
  • Stephan Kreutzer
    • 1
  • Joël Ouaknine
    • 1
  • James Worrell
    • 1
  1. 1.Computing LaboratoryOxford UniversityUK

Personalised recommendations