HYPE: A Process Algebra for Compositional Flows and Emergent Behaviour

  • Vashti Galpin
  • Luca Bortolussi
  • Jane Hillston
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5710)


Several process algebras for modelling hybrid systems have appeared in the literature in recent years. These all assume that continuous variables in the system are modelled monolithically, often with the differential equations embedded explicitly in the syntax of the process algebra expression. In HYPE an alternative approach is taken which offers finer-grained modelling with each flow or influence affecting a variable modelled separately. The overall behaviour then emerges as the composition of these flows. This approach is supported by an operational semantics which distinguishes states as collections of flows and which is supported by an equivalence which satisfies the property that bisimilar HYPE models give rise to the same sets of continuous behaviours.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Grosu, R., Lee, I., Sokolsky, O.: Compositional modeling and refinement for hierarchical hybrid systems. Journal of Logic and Algebraic Programming 68(1-2), 105–128 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Antoniotti, M., Mishra, B., Piazza, C., Policriti, A., Simeoni, M.: Modeling cellular behavior with hybrid automata: Bisimulation and collapsing. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 57–74. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bergstra, J.A., Middelburg, C.A.: Process algebra for hybrid systems. Theoretical Computer Science 335(2-3), 215–280 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bortolusssi, L., Policriti, A.: Hybrid approximation of stochastic process algebras for systems biology. In: IFAC World Congress, Seoul, South Korea (July 2008)Google Scholar
  5. 5.
    Cuijpers, P., Broenink, J., Mosterman, P.: Constitutive hybrid processes: a process-algebraic semantics for hybrid bond graphs. Simulation 8, 339–358 (2008)CrossRefGoogle Scholar
  6. 6.
    Cuijpers, P.J.L., Reniers, M.A.: Hybrid process algebra. Journal of Logic and Algebraic Programming 62(2), 191–245 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Davoren, J.M., Tabuada, P.: On simulations and bisimulations of general flow systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 145–158. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Deshpande, A., Göllü, A., Varaiya, P.: SHIFT: A formalism and a programming language for dynamic networks of hybrid automata. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1996. LNCS, vol. 1273, pp. 113–133. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)CrossRefGoogle Scholar
  10. 10.
    Galpin, V., Hillston, J., Bortolussi, L.: HYPE applied to the modelling of hybrid biological systems. Electronic Notes in Theoretical Computer Science 218, 33–51 (2008)CrossRefzbMATHGoogle Scholar
  11. 11.
    Grosu, R., Stauner, T.: Modular and visual specification of hybrid systems: An introduction to HyCharts. Formal Methods in System Design 21(1), 5–38 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Haghverdi, E., Tabuada, P., Pappas, G.J.: Bisimulation relations for dynamical, control, and hybrid systems. Theoretical Computer Science 342(2-3), 229–261 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292 (1996)Google Scholar
  14. 14.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HYTECH: A model checker for hybrid systems. International Journal on Software Tools for Technology Transfer 1(1-2), 110–122 (1997)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hillston, J.: Fluid flow approximation of PEPA models. In: Second International Conference on the Quantitative Evaluation of Systems (QEST 2005), pp. 33–43. IEEE Computer Society, Los Alamitos (2005)CrossRefGoogle Scholar
  16. 16.
    Khadim, U.: A comparative study of process algebras for hybrid systems. Computer Science Report CSR 06-23, Technische Universiteit Eindhoven (2006),
  17. 17.
    Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. Mathematics of Control, Signals, and Systems 13(1), 1–21 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Paynter, H.: Analysis and Design of Engineering Systems. MIT Press, Cambridge (1961)Google Scholar
  19. 19.
    Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theoretical Computer Science 290(1), 937–973 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rounds, W.C., Song, H.: The Φ-calculus: A language for distributed control of reconfigurable embedded systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 435–449. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Tuffin, B., Chen, D.S., Trivedi, K.S.: Comparison of hybrid systems and fluid stochastic Petri nets. Discrete Event Dynamic Systems: Theory and Applications 11, 77–95 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    van Beek, D., Man, K., Reniers, M., Rooda, J., Schiffelers, R.: Syntax and consistent equation semantics of hybrid χ. Journal of Logic and Algebraic Programming 68(1-2), 129–210 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Vashti Galpin
    • 1
  • Luca Bortolussi
    • 2
  • Jane Hillston
    • 1
  1. 1.Laboratory for Foundations of Computer ScienceUniversity of EdinburghUK
  2. 2.Department of Maths and Computer ScienceUniversity of TriesteItaly

Personalised recommendations