Testing Finitary Probabilistic Processes

(Extended Abstract)
  • Yuxin Deng
  • Rob van Glabbeek
  • Matthew Hennessy
  • Carroll Morgan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5710)


We provide both modal- and relational characterisations of may- and must-testing preorders for recursive CSP processes with divergence, featuring probabilistic as well as nondeterministic choice. May testing is characterised in terms of simulation, and must testing in terms of failure simulation. To this end we develop weak transitions between probabilistic processes, elaborate their topological properties, and express divergence in terms of partial distributions.


Modal Logic Markov Decision Process Label Transition System Probabilistic Process Weak Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C.: Characterising testing preorders for finite probabilistic processes. Logical Methods in Computer Science 4(4:4) (2008)Google Scholar
  2. 2.
    Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C.: Testing finitary probabilistic processes. Full version of this extended abstract (2009),
  3. 3.
    Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C., Zhang, C.: Remarks on testing probabilistic processes. ENTCS 172, 359–397 (2007)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Deng, Y., van Glabbeek, R.J., Morgan, C.C., Zhang, C.: Scalar outcomes suffice for finitary probabilistic testing. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 363–378. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Computer Science 34, 83–133 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panagaden, P.: Weak bisimulation is sound and complete for PCTL*. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 355–370. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  8. 8.
    Jones, C.: Probabilistic Non-determinism. Ph.D. Thesis, University of Edinburgh (1990)Google Scholar
  9. 9.
    Lipschutz, S.: Schaum’s outline of theory and problems of general topology. McGraw-Hill, New York (1965)zbMATHGoogle Scholar
  10. 10.
    Lynch, N., Segala, R., Vaandrager, F.W.: Observing branching structure through probabilistic contexts. SIAM Journal on Computing 37(4), 977–1013 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    McIver, A.K., Morgan, C.C.: Abstraction, Refinement and Proof for Probabilistic Systems. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  12. 12.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  13. 13.
    Puterman, M.: Markov Decision Processes. Wiley, Chichester (1994)CrossRefzbMATHGoogle Scholar
  14. 14.
    Segala, R.: Testing probabilistic automata. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 299–314. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  15. 15.
    Yi, W., Larsen, K.G.: Testing probabilistic and nondeterministic processes. In: Proc. PSTV 1992. IFIP Transactions C-8, pp. 47–61. North-Holland, Amsterdam (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yuxin Deng
    • 1
  • Rob van Glabbeek
    • 2
    • 4
  • Matthew Hennessy
    • 3
  • Carroll Morgan
    • 4
  1. 1.Shanghai Jiao Tong UniversityChina
  2. 2.NICTASydneyAustralia
  3. 3.Trinity College DublinIreland
  4. 4.University of New South WalesSydneyAustralia

Personalised recommendations