Measuring Permissivity in Finite Games

  • Patricia Bouyer
  • Marie Duflot
  • Nicolas Markey
  • Gabriel Renault
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5710)


In this paper, we extend the classical notion of strategies in turn-based finite games by allowing several moves to be selected. We define and study a quantitative measure for permissivity of such strategies by assigning penalties when blocking transitions. We prove that for reachability objectives, most permissive strategies exist, can be chosen memoryless, and can be computed in polynomial time, while it is in NP ∩ coNP for discounted and mean penalties.


Polynomial Time Outgoing Edge Winning Strategy Discount Cost Permissive Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AMPS98]
    Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In: Proc. IFAC Symposium on System Structure and Control, pp. 469–474. Elsevier, Amsterdam (1998)Google Scholar
  2. [BCD+07]
    Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.: UPPAAL-tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. [BJW02]
    Bernet, J., Janin, D., Walukiewicz, I.: Permissive strategies: From parity games to safety games. Inf. Théor. et Applications 36(3), 261–275 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. [CHJ05]
    Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Mean-payoff parity games. In: Proc. 20th Annual Symposium on Logic in Computer Science (LICS 2005). IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  5. [DDR04]
    De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: From timed models to timed implementations. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 296–310. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. [HP06]
    Henzinger, T.A., Prabhu, V.S.: Timed alternating-time temporal logic. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 1–17. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. [Jur98]
    Jurdziński, M.: Deciding the winner in parity games is in UP ∩ coUP. Information Processing Letters 68(3), 119–124 (1998)MathSciNetCrossRefMATHGoogle Scholar
  8. [LMO06]
    Laroussinie, F., Markey, N., Oreiby, G.: Model-checking timed ATL for durational concurrent game structures. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 245–259. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. [Lut08]
    Luttenberger, M.: Strategy iteration using non-deterministic strategies for solving parity games. Research Report cs.GT/0806.2923, arXiv (2008)Google Scholar
  10. [PR05]
    Pinchinat, S., Riedweg, S.: You can always compute maximally permissive controllers under partial observation when they exist. In: Proc. 24th American Control Conf. (ACC 2005), pp. 2287–2292 (2005)Google Scholar
  11. [Tho02]
    Thomas, W.: Infinite games and verification (Extended abstract of a tutorial). In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 58–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. [ZP96]
    Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theoretical Computer Science 158(1-2), 343–359 (1996)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Patricia Bouyer
    • 1
  • Marie Duflot
    • 2
  • Nicolas Markey
    • 1
  • Gabriel Renault
    • 3
  1. 1.LSVCNRS & ENS CachanFrance
  2. 2.LACLUniversité Paris 12France
  3. 3.Département InformatiqueENS LyonFrance

Personalised recommendations