Advertisement

A Weak Solvability of the Navier-Stokes Equation with Navier’s Boundary Condition Around a Ball Striking theWall

  • Jiřί NeustupaEmail author
  • Patrick Penel
Chapter

Abstract

There exists a series of other works dealing with flows in time varying domains that concern the motion of one or more bodies in a fluid. The fluid and the bodies are studied as an interconnected system so that the position of the bodies in the fluid is not apriori known. The weak solvability of such a problem, provided the bodies do not touch each other or they do not strike the boundary, was proved by B. Desjardins and M. J. Esteban [4, 5], K. H. Hoffmann and V. N. Starovoitov [13] (the 2D case), C. Conca et al. [2] and M. D. Gunzburger et al. [12].

Keywords

Navier-Stokes equations Weak solution Navier’s boundary condition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams R.: Sobolev Spaces. Academic Press, New York, San Francisco, London (1975)Google Scholar
  2. 2.
    Conca C., San Martín J., Tucsnak M.: Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Comm. Part. Diff. Equat. 25 (5&6), 1019–1042 (2000)zbMATHGoogle Scholar
  3. 3.
    Dautray R., Lions M.J.: Mathematical Analysis and Numerical Methods for Science and Technology II. Springer, Berlin, Heidelberg (2000)Google Scholar
  4. 4.
    Desjardins B., Esteban M.J.: Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Rat. Mech. Anal. 146, 59–71 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Desjardins B., Esteban M.J.: On weak solutions for fluid-rigid structure interaction: compressible and incompressible models. Comm. Part. Diff. Equat. 25 (7&8), 1399–1413 (2000)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Feireisl E.: On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equat. 3, 419–441 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fujita H., Sauer N.: On existence of weak solutions of the Navier-Stokes equations in regions with moving boundaries. J. Fac. Sci. Univ. Tokyo, Sec. 1A, 17, 403–420 (1970)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I, Linear Steady Problems. Springer Tracts in Natural Philosophy 38 (1998)Google Scholar
  9. 9.
    Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. II, Nonlinear Steady Problems. Springer Tracts in Natural Philosophy 39 (1998)Google Scholar
  10. 10.
    Galdi G.P.: An Introduction to the Navier–Stokes initial–boundary value problem. In Fundamental Directions in Mathematical Fluid Mechanics, ed. G.P.Galdi, J. Heywood, R. Rannacher, series “Advances in Mathematical Fluid Mechanics”, Vol. 1, Birkhauser–Verlag, Basel, 1–98 (2000)Google Scholar
  11. 11.
    Galdi G.P.: On the motion of a rigid body in a viscous fluid: a mathematical analysis with applications. In Handbook of Mathematical Fluid Dynamics I, Ed. S. Friedlander and D. Serre, Elsevier (2002)Google Scholar
  12. 12.
    Gunzburger M.D., Lee H.C., Seregin G.: Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2, 219–266 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hoffmann K.H., Starovoitov V.N.: On a motion of a solid body in a viscous fluid. Two–dimensional case. Adv. Math. Sci. Appl. 9, 633–648 (1999)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Hoffmann K.H., Starovoitov V.N.: Zur Bewegung einer Kugel in einen zähen Flüssigkeit. Documenta Mathematica 5, 15–21 (2000)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Hopf E.: Über die Anfangswertaufgabe für die Hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1950)MathSciNetGoogle Scholar
  16. 16.
    Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)Google Scholar
  17. 17.
    Leray J.: Sur le mouvements d’un liquide visqueux emplissant l’espace. Acta Mathematica 63, 193–248 (1934)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lions J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Gauthier–Villars, Paris (1969)Google Scholar
  19. 19.
    Neustupa J.: Existence of a weak solution to the Navier-Stokes equation in a general time–varying domain by the Rothe method. Preprint (2007)Google Scholar
  20. 20.
    San Martín J., Starovoitov V.N., Tucsnak M.: Global weak solutions for the two–dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Rat. Mech. Anal. 161, 113–147 (2002)zbMATHCrossRefGoogle Scholar
  21. 21.
    Starovoitov V.N.: Behavior of a rigid body in an incompressible viscous fluid near a boundary. Int. Series of Num. Math. 147, 313–327 (2003)MathSciNetGoogle Scholar
  22. 22.
    Temam R.: Navier-Stokes Equations. North-Holland, Amsterdam–New York–Oxford (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Mathematical Institute of the Czech Academy of SciencesPraha 1Czech Republic
  2. 2.Département de Mathématique & Laboratoire “Systémes Navals Complexes„Université du Sud Toulon–VarLa Garde cedexFrance

Personalised recommendations