Advertisement

Stability of Poiseuille Flow in a Porous Medium

  • Antony A. Hill
  • Brian StraughanEmail author
Chapter

Abstract

We study the linear instability and nonlinear stability of Poiseuille flow in a porous medium of Brinkman type. The equivalent of the Orr-Sommerfeld eigenvalue problem is solved numerically. Difficulties with obtaining the spectrum of the porous Orr-Sommerfeld equation are discussed. The nonlinear energy stability eigenvalue problems are solved for x, z and y, z disturbances.

Keywords

Poiseuille flow Porous media Orr-Sommerfeld equation Nonlinear stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang, M.H., Chen, F., Straughan, B.: Instability of Poiseuille flow in a fluid overlying a porous layer. J. Fluid Mech. 564, 287–303 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Dongarra, J.J., Straughan, B., Walker, D.W.: Chebyshev tau – QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Appl. Numer. Math. 22, 399–435 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Galdi, G.P., Pileckas, K., Silvestre, A.L.: On the unsteady Poiseuille flow in a pipe. ZAMP 58, 994–1007 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Galdi, G.P., Robertson, A.M.: The relation between flow rate and axial pressure gradient for time-periodic Poiseuille flow in a pipe. J. Math. Fluid Mech. 7, S211–S223 (2005)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Galdi, G.P., Straughan, B.: Exchange of stabilities, symmetry and nonlinear stability. Arch. Rational Mech. Anal. 89, 211–228 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hill, A.A., Straughan, B.: Poiseuille flow of a fluid overlying a porous layer. J. Fluid Mech. 603, 137–149 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Joseph, D.D.: Stability of Fluid Motions I. Springer, New York (1976)Google Scholar
  8. 8.
    Kaiser, R., Mulone, G.: A note on nonlinear stability of plane parallel shear flows. J. Math. Anal. Appl. 302, 543–556 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Nield, D.A.: The stability of flow in a channel or duct occupied by a porous medium. Int. J. Heat Mass Transfer 46, 4351–4354 (2003)zbMATHCrossRefGoogle Scholar
  10. 10.
    Straughan, B.: Explosive Instabilities in Mechanics. Springer, Heidelberg (1998)Google Scholar
  11. 11.
    Straughan, B.: Stability and wave motion in porous media. Appl. Math. Sci. Ser. 165, Springer, New York (2008).Google Scholar
  12. 12.
    Webber, M., Straughan, B.: Stability of pressure driven flow in a microchannel. Rend. Circolo Matem. Palermo 78, 343–357 (2006)MathSciNetGoogle Scholar
  13. 13.
    Yecko, P.: Disturbance growth in two-fluid channel flow. The role of capillarity. Int. J. Multiphase Flow 34, 272–282 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Mathematical Sciences, University of NottinghamNottinghamUK
  2. 2.Department of Mathematical SciencesDurham UniversityDurhamUK

Personalised recommendations