Advertisement

Isotropically and Anisotropically Weighted Sobolev Spaces for the Oseen Equation

  • Chérif AmroucheEmail author
  • Ulrich Razafison
Chapter

Abstract

This contribution is devoted to the Oseen equations, a linearized form of the Navier-Stokes equations. We give here some results concerning the scalar Oseen operator and we prove Hardy inequalities concerning functions in Sobolev spaces with anisotropic weights that appear in the investigation of the Oseen equations.

Keywords

Oseen equations Anisotropic weights Hardy inequality Sobolev weighted spaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Amrouche and H. Bouzit, L p – inequalities for scalar Oseen potential. J. Math. Anal. Appl. 337 (2008), 753–770zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    C. Amrouche, V. Girault and J. Giroire, Weighted Sobolev spaces for Laplace’s equation in ℝn. J. Math. Pures. Appl. 73 (1994), 579–606zbMATHMathSciNetGoogle Scholar
  3. 3.
    C. Amrouche and U. Razafison, Weighted Sobolev spaces for a scalar model of the stationary Oseen equations in ℝ3. J. Math. Fluid Mech. 9 (2007), 181–210zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    C. Amrouche and U. Razafison, The stationary Oseen equations in ℝ3. An approach in weighted sobolev spaces. J. Math. Fluid Mech. 9 (2007), 211–225zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    C. Amrouche and U. Razafison, Espaces de Sobolev avec poids et équation scalaire d’Oseen dans ℝn. C. R. Math. Acad. Sci. Paris. 337(12) (2003), 761–766zbMATHMathSciNetGoogle Scholar
  6. 6.
    R. Farwig, A variational approach in weighted Sobolev spaces to the operator -Δ + ∂/∂ x 1 in exterior domains of ℝ3. Math. Z. 210(3) (1992), 449–464zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    R. Farwig and H. Sohr, Weighted estimates for the Oseen equations and the Navier-Stokes equations in exterior domains. Ser. Adv. Math. Appl. Sci. 47 (1998), 11–30MathSciNetGoogle Scholar
  8. 8.
    G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations – Vol. I. Springer Tracts in Natural Philosophy, 38, Springer-Verlag, Berlin, 1994Google Scholar
  9. 9.
    G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities. Cambridge University Press, New York, 1952zbMATHGoogle Scholar
  10. 10.
    S. Kračmar, Š. Nečasová and P. Penel, Anisotropic L 2-estimates of weak solutions to the stationary Oseen type equations in ℝ3 for rotating body. RIMS Kokyuroku Bessatsu B1 (2007), 219–235zbMATHGoogle Scholar
  11. 11.
    S. Kračmar, A. Novotný and M. Pokorný, Estimates of Oseen kernels in weighted L p spaces. J. Math. Soc. Japan 53 (2001), 59–111zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    P. I. Lizorkin, (L p , L q ) – multipliers of Fourier integrals. Dokl. Akad. Nauk SSSR 152, (1963), 808–811MathSciNetGoogle Scholar
  13. 13.
    C. W. Oseen, Neuere : Methoden : und  Ergebnisse   in   der   Hydrodynamik. Akadem. Verlagsgesellschaft, Leipzig, 1927Google Scholar
  14. 14.
    M. Reed and B. Simon, Fourier Analysis Self-Adjointness. t.II Academic Press New York, 1975Google Scholar
  15. 15.
    E. M. Stein, Singulars Integrals and Differentiability Properties of Functions. Princeton University Press. Princeton, NJ, 1970Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques AppliquéesUniversité de Pau et des Pays de l’Adour, IPRA, UMR CNRS 5142PauFrance
  2. 2.MAPMOFédération Denis Poisson, UMR CNRS 6628Orléans cedex 2France

Personalised recommendations