Decision Space Diversity Can Be Essential for Solving Multiobjective Real-World Problems

  • Mike Preuss
  • Christoph Kausch
  • Claude Bouvy
  • Frank Henrich
Conference paper
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 634)

Abstract

It has recently been argued that standard multiobjective algorithms like NSGA-II, SPEA2, and SMS-EMOA, are not well suited for solving problems with symmetries and/or multimodal single objective functions due to their concentration onto one Pareto set part. We here deliver a real-world application that shows such properties and is thus hard to solve by standard approaches. As direct tuning of the algorithms is too costly, we attempt it via constructive modeling (algorithm-based validation), but succeed only partly in improving performance, which emphasizes the need to integrate special operators for boosting decision space diversity in future algorithms.

Keywords

Evolutionary multi-criterial optimization Decision space diversity Constructive surrogate modeling 

References

  1. Bartz-Beielstein, T. (2006). Experimental Research in Evolutionary Computation – The New Experimentalism. Natural Computing Series. Berlin: Springer.Google Scholar
  2. Beielstein, T., Markon, S., & Preuß, M. (2003). Algorithm based validation of a simplified elevator group controller model. In T. Ibaraki (Ed.), Proc. 5th Metaheuristics Int’l Conf. (MIC’03) (pp. 06/1–06/13). (CD–ROM).Google Scholar
  3. Deb, K., Agrawal, S., Pratab, A., & Meyarivan, T. (2000). A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In M. Schoenauer et al. (Eds.), Proceedings of the Parallel Problem Solving from Nature VI Conference, Vol. 1917 of LNCS (pp. 849–858). Springer.Google Scholar
  4. Emmerich, M., Beume, N., & Naujoks, B. (2005). An EMO algorithm using the hypervolume measure as selection criterion. In C. A. C. Coello et al. (Eds.), Evolutionary Multi-Criterion Optimization (EMO 2005) (pp. 62–76). Springer.Google Scholar
  5. Henrich, F., Bouvy, C., Kausch, C., Lucas, K., Preuss, M., Rudolph, G., & Roosen, P. (2008). Economic optimization of non-sharp separation sequences by means of evolutionary algorithms. Computers & chemical Engineering, 32(7), 1411–1432.CrossRefGoogle Scholar
  6. Le Goff, P., Cachot, T., & Rivero, R. (1996). Exergy analysis of distillation processes. Chemical Engineering & Technology, 19, 478–485.CrossRefGoogle Scholar
  7. Lucas, K. (2004). Thermodynamik (4th ed.). Springer.Google Scholar
  8. Miettinen, K. (1999). Nonlinear Multiobjective Optimization, Vol. 12 of International Series in Operations Research and Management Science. Dordrecht: Kluwer.Google Scholar
  9. Preuss, M., Naujoks, B., & Rudolph, G. (2006). Pareto set and EMOA behavior for simple multimodal multiobjective functions. In T. P. Runarsson et al. (Eds.), Parallel Problem Solving from Nature – PPSN IX, Proc. Ninth Int’l Conf., Reykjavik, Vol. 4193 of LNCS (pp. 513–522). Springer.Google Scholar
  10. Rudolph, G., Naujoks, B., & Preuss, M. (2007). Capabilities of EMOA to detect and preserve equivalent Pareto subsets. In S. Obayashi et al. (Eds.), Proc. Evolutionary Multi-Criterion Optimization, Fourth Int’l Conf.(EMO 2007), Vol. 4403 of LNCS (pp. 36–50). Springer.Google Scholar
  11. Sattler, K. (2001). Thermische Trennverfahren (3rd ed.). Wiley.Google Scholar
  12. Wozny, G., Fett, F., & Cremer, H. (1983a). Exergetische Analyse der Rektifikation Teil 1. Verfahrenstechnik 17, Nr.6 (pp. 375–381).Google Scholar
  13. Wozny, G., Fett, F., & Cremer, H. (1983b). Exergetische Analyse der Rektifikation Teil 2. Verfahrenstechnik 17, Nr.7 (pp. 433–439).Google Scholar
  14. Zitzler, E., Laumanns, M., & Thiele, L. (2002). SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In K. Giannakoglou et al. (Eds.), EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems (pp. 95–100), Athens, Greece.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mike Preuss
    • 1
  • Christoph Kausch
  • Claude Bouvy
  • Frank Henrich
  1. 1.TU Dortmund UniversityTU DortmundGermany

Personalised recommendations