On the Potential of Multi-objective Optimization in the Design of Sustainable Energy Systems

  • Claude Bouvy
  • Christoph Kausch
  • Mike Preuss
  • Frank Henrich
Conference paper
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 634)

Abstract

A new multi-criterial methodology is introduced for the combined structural and operational optimization of energy supply systems and production processes. The methodology combines a multi-criterial evolutionary optimizer for structural optimization with a code for the operational optimization and simulation. The genotype of the individuals is interpreted with a superstructure. The methodology is applied to three real world case studies: one communal and one industrial energy supply system, one distillation plant. The resulting Pareto fronts and potentials for cost reduction and ecological savings are discussed.

Keywords

Communal energy supply concepts Distillation plants Evolutionary algorithms Industrial energy supply systems Multi-objective optimization 

References

  1. Augenstein, E. & Herbergs, S. (2005). Simulation of industrial energy supply systems with integrated cost optimization. In 18th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Athens.Google Scholar
  2. Augenstein, E., Wrobel, G., Kuperjans, I., & Plessow, M. (2004). Top-energy: computational support for energy system engineering processes. In First international conference from scientific computing to computational engineering, Athens.Google Scholar
  3. Bouvy, C. (2007). Kombinierte Struktur- und Einsatzoptimierung von Energieversorgungssystemen mit einer Evolutionsstrategie. Ph.D. thesis, RWTH Aachen University.Google Scholar
  4. Bouvy, C. & Lucas, K. (2007). Multicriterial optimisation of communal energy supply concepts. Energy Conversion and Management, 48(11), 2827–2835.CrossRefGoogle Scholar
  5. Eiben, A. & Smith, J. (2003). Introduction to Evolutionary Computing. Natural Computing Series. Springer.Google Scholar
  6. Emmerich, M., Beume, N., & Naujoks, B. (2005). An EMO algorithm using the hypervolume measure as selection criterion. In C. Coello Coello (Ed.), Evolutionary Multi-Criterion Optimization (EMO 2005) (pp. 62–76). Berlin: Springer.CrossRefGoogle Scholar
  7. Henrich, F., Bouvy, C., Kausch, C., Lucas, K., Preuss, M., Rudolph, G., & Roosen, P. (2008). Economic optimization of non-sharp separation sequences by means of evolutionary algorithms. Computers & Chemical Engineering, 32(7), 1411–1432.CrossRefGoogle Scholar
  8. Preuss, M., Kausch, C., Bouvy, C., & Henrich, F. (2008). Decision space diversity can be essential for solving multiobjective real-world problems. In M. Ehrgott (Ed.), 19th International Conference on Multiple Criteria Decision Making.Google Scholar
  9. Schwefel, H. (1995). Evolution and Optimum Seeking. New York: Wiley.Google Scholar
  10. Thomassen, M. & de Boer, I. (2005). Evaluation of indicators to assess the environmental impact of dairy production systems. Agriculture, ecosystems & environment, 111(1–4), 185–199.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Claude Bouvy
    • 1
  • Christoph Kausch
  • Mike Preuss
  • Frank Henrich
  1. 1.Forschungsgesellschaft Kraftfahrwesen mbH AachenAachenGermany

Personalised recommendations