A Multiobjective Evolutionary Algorithm for Numerical Parameter Space Characterization of Reaction Diffusion Systems

  • Tim Hohm
  • Eckart Zitzler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5780)


Mathematical modeling is used to assist in studying complex biological systems. Still, setting up and characterizing models pose challenges of its own: identifying suitable model parameters, even when high-resolution time course data concerning the system behavior is available, is a difficult task. This task is further complicated when this high-resolution data remains unavailable like for the tissue level systems considered in developmental biology—a type of systems we focus on in the present study. In addition, costly simulations for tissue level systems prohibit excessive simulations during the parameter estimation phase.

Here, we propose an approach that is dedicated to assist in the task of parameter space characterization for reaction diffusion models—a common type of models in developmental biology. We investigate a method to numerically identify boundaries that partition the parameter space of a given model in regions that result in qualitatively different system behavior. Using an Evolutionary Algorithm (EA) combined with an Artificial Neural Network (ANN), we try to identify a representative set of parameter settings minimizing the distance to such boundaries. In detail we train the ANN on numerical data annotated using analytical results to learn the mapping between parameter space and distances to boundaries, thereby guiding the optimization process of the EA to identify such a set of parameter settings. The approach is tested with respect to its boundary identification and generalization capabilities on three different reaction diffusion systems—for all three we are capable of reliably identifying boundaries using the proposed approach.


Parameter Space Ensemble Member Multiobjective Evolutionary Algorithm Biological Pattern Formation Parameter Space Partition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. IOP Publishing and Oxford University Press (1997)Google Scholar
  2. 2.
    Bader, J., Zitzler, E.: HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization. TIK Report 286, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (November 2008)Google Scholar
  3. 3.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)Google Scholar
  4. 4.
    Foster, J.A.: Evolutionary Computation. Nat. Rev. Genet. 2(6), 428–436 (2001)CrossRefPubMedGoogle Scholar
  5. 5.
    Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)CrossRefPubMedGoogle Scholar
  6. 6.
    Granitto, P.M., Verdes, P.F., Cecatto, H.A.: Neural network ensembles: evaluation of aggregation algorithms. Artif. Intell. 163, 139–162 (2005)CrossRefGoogle Scholar
  7. 7.
    Hoeffding, W.: Probability Inequalities for Sums of Bounded Random Variables. Journal of the American Statistical Association 58(301), 13–30 (1963)CrossRefGoogle Scholar
  8. 8.
    Hohm, T., Zitzler, E.: Modeling the Shoot Apical Meristem in A. thaliana: Parameter Estimation for Spatial Pattern Formation. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds.) EvoBIO 2007. LNCS, vol. 4447, pp. 102–113. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Hohm, T., Zitzler, E.: Multiobjectivization for Parameter Estimation: a Case-Study on the Segment Polarity Network of Drosophila. In: Raidl, G., et al. (eds.) Genetic and Evolutionary Computation Conference (GECCO 2009). ACM, New York (to appear, 2009)Google Scholar
  10. 10.
    Igel, C., Hansen, N., Roth, S.: The Multi-objective Variable Metric Evolution Strategy, Part I. Technical Report IRINI 2005-04, Institut für Neuroinformatik, Ruhr-Universität Bochum, 44780 Bochum (2005)Google Scholar
  11. 11.
    Jönsson, H., Heisler, M., Reddy, G.V., Agrawal, V., Gor, V., Shapiro, B.E., Mjolsness, E., Meyerowitz, E.M.: Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem. Bioinformatics 21, i232–i240 (2005)CrossRefGoogle Scholar
  12. 12.
    Koch, A.J., Meinhardt, H.: Biological pattern formation: from basic mechanisms to complex structures. Rev. Mod. Phys. 66(4), 1481–1510 (1994)CrossRefGoogle Scholar
  13. 13.
    Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, London (1982)Google Scholar
  14. 14.
    Murray, J.D.: Mathematical Biology. Springer, New York (2003)Google Scholar
  15. 15.
    Nabney, I.T.: NETLAB: Algorithms for Pattern Recognition. In: Advances in Pattern Recognition, 2nd edn. Springer, Oxford (2003)Google Scholar
  16. 16.
    Prigogine, I., Lefever, R.: Symmetry Breaking Instabilities in Dissipative Systems. J. Chem. Phys. 48, 1695–1700 (1968)CrossRefGoogle Scholar
  17. 17.
    Raffard, R., Amonlirdviman, K., Axelrod, J.D., Tomlin, C.J.: Automatic parameter identification via the adjoint method, with application to understanding planar cell polarity. In: IEEE Conference on Decision and Control, Piscataway, NJ, USA, pp. 13–18. IEEE Press, Los Alamitos (2006)Google Scholar
  18. 18.
    Ruuth, S.J.: Implicit-explicit methods for reaction-diffusion problems in pattern formation. J. Math. Biol. 34(2), 148–176 (1995)CrossRefGoogle Scholar
  19. 19.
    Sharkey, A.J.C. (ed.): Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems. Springer, London (1999)Google Scholar
  20. 20.
    Tomlin, C.J., Axelrod, D.: Biology by numbers: mathematical modelling in developmental biology. Nat. Rev. Genet. 8, 331–340 (2007)CrossRefPubMedGoogle Scholar
  21. 21.
    Turing, A.: The chemical basis for morphogenesis. Philos. Trans. R Soc. Lond, B 237, 37–72 (1952)CrossRefGoogle Scholar
  22. 22.
    Voit, E.O.: Computational Analysis of Biochemical Systems. Cambridge University Press, Cambridge (2000)Google Scholar
  23. 23.
    Yamaguchi, M., Yoshimoto, E., Kondo, S.: Pattern regulation in the stripe of zebrafish suggests an underlying dynamic and autonomous mechanism. Proc. Natl. Acad. Sci. USA 104(12), 4790–4793 (2007)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tim Hohm
    • 1
  • Eckart Zitzler
    • 1
  1. 1.Computer Engineering and Networks LaboratoryETH ZurichZurichSwitzerland

Personalised recommendations