Automatic Structures of Bounded Degree Revisited

  • Dietrich Kuske
  • Markus Lohrey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5771)

Abstract

It it shown that the first-order theory of an automatic structure, whose Gaifman graph has bounded degree, is decidable in doubly exponential space (for injective automatic presentations, this holds even uniformly). Presenting an automatic structure of bounded degree whose theory is hard for 2EXPSPACE, we also prove this result to be optimal. These findings close the gap left open in [14].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bárány, V., Kaiser, Ł., Rubin, S.: Cardinality and counting quantifiers on omega-automatic structures. In: STACS 2008, pp. 385–396. IFIB Schloss Dagstuhl (2008)Google Scholar
  2. 2.
    Blumensath, A.: Automatic structures. Technical report, RWTH Aachen (1999)Google Scholar
  3. 3.
    Blumensath, A., Grädel, E.: Automatic Structures. In: LICS 2000, pp. 51–62. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  4. 4.
    Compton, K., Henson, C.: A uniform method for proving lower bounds on the computational complexity of logical theories. Ann. Pure Appl. Logic 48, 1–79 (1990)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Elgot, C.: Decision problems of finite automata design and related arithmetics. Trans. Am. Math. Soc. 98, 21–51 (1961)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Epstein, D., Cannon, J., Holt, D., Levy, S., Paterson, M., Thurston, W.: Word Processing In Groups. Jones and Bartlett Publishers, Boston (1992)MATHGoogle Scholar
  7. 7.
    Finkel, O.: On decidability properties of one-dimensional cellular automata. arXiv.org (2008), http://arxiv.org/abs/0903.4615
  8. 8.
    Gaifman, H.: On local and nonlocal properties. In: Logic Colloquium 1981, pp. 105–135. North-Holland, Amsterdam (1982)Google Scholar
  9. 9.
    Hodgson, B.: On direct products of automaton decidable theories. Theoret. Comput. Sci. 19, 331–335 (1982)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  11. 11.
    Khoussainov, B., Rubin, S., Stephan, F.: Definability and regularity in automatic structures. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 440–451. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Kuske, D., Lohrey, M.: First-order and counting theories of ω-automatic structures. J. Symbolic Logic 73, 129–150 (2008)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kuske, D., Lohrey, M.: Automatic structures of bounded degree revisited. arXiv.org (2008), http://arxiv.org/abs/0810.4998
  14. 14.
    Lohrey, M.: Automatic structures of bounded degree. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 344–358. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Rubin, S.: Automata presenting structures: A survey of the finite string case. Bull. Symbolic Logic 14, 169–209 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Rybina, T., Voronkov, A.: Upper bounds for a theory of queues. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 714–724. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Weber, A.: On the valuedness of finite transducers. Acta Inform. 27, 749–780 (1990)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dietrich Kuske
    • 1
  • Markus Lohrey
    • 1
  1. 1.Institut für InformatikUniversität LeipzigGermany

Personalised recommendations