Craig Interpolation for Linear Temporal Languages

  • Amélie Gheerbrant
  • Balder ten Cate
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5771)


We study Craig interpolation for fragments and extensions of propositional linear temporal logic (PLTL). We consider various fragments of PLTLobtained by restricting the set of temporal connectives and, for each of these fragments, we identify its smallest extension that has Craig interpolation. Depending on the underlying set of temporal operators, this extension turns out to be one of the following three logics: the fragment of PLTLhaving only the Next operator; the extension of PLTLwith a fixpoint operator μ (known as linear time μ-calculus); the fixpoint extension of the “Until-only” fragment of PLTL.


Propositional Linear Temporal Logic Craig Interpolation Linear Time μ-Calculus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amir, E., McIlraith, S.A.: Partition-based logical reasoning for first-order and propositional theories. Artif. Intell. 162(1-2), 49–88 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Areces, C., de Rijke, M.: Interpolation and bisimulation in temporal logic. In: Guerra, R.J., de Queiroz, B., Finger, M. (eds.) Proceedings of WoLLIC 1998, pp. 15–21 (1998)Google Scholar
  3. 3.
    Arnold, A., Niwinski, D.: Rudiments of μ-Calculus. Studies in Logic and Foundations of Mathematics, vol. 146. North-Holland, Amsterdam (2001)MATHGoogle Scholar
  4. 4.
    Barwise, J., Feferman, S.: Model-theoretic logics. Springer, New York (1985)MATHGoogle Scholar
  5. 5.
    Bruyère, V., Carton, O.: Automata on linear orderings. J. Comput. System Sci. 73(1), 1–24 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    ten Cate, B.: Model Theory for Extended Modal Languages. PhD thesis, University of Amsterdam, ILLC Dissertation Series DS-2005-01 (2005)Google Scholar
  7. 7.
    Craig, W.: Three Uses of the Herbrand-Gentzen Theorem in Relating Model Theory and Proof Theory. Journal of Symbolic Logic 22(3), 269–285 (1957)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    D’Agostino, G.: Interpolation in non-classical logics. Synthese 164(3), 421–435 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    D’Agostino, G., Hollenberg, M.: Logical Questions Concerning the μ-Calculus: Interpolation, Lyndon and Lös-Tarski. Journal of Symbolic Logic 65(1), 310–332 (2000)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gerard, R., de Lavalette, R.: Interpolation in computing science: the semantics of modularization. Synthese 164(3), 437–450 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 995–1072. Elsevier, Amsterdam (1990)Google Scholar
  12. 12.
    Etessami, K.: Stutter-Invariant Languages, ω-Automata, and Temporal Logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 236–248. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Gross, R.: Invariance under stuttering in branching-time temporal logic. Master’s thesis, Israel Institute of Technology, Haifa (2008)Google Scholar
  14. 14.
    Kaivola, R.: Using Automata to Characterise Fixed Point Temporal Logics. PhD thesis, University of Edinburgh (1997)Google Scholar
  15. 15.
    Kamp, H.: Tense Logic and the Theory of Linear Order. PhD thesis, UCLA, Los Angeles (1968)Google Scholar
  16. 16.
    Lamport, L.: What Good is Temporal Logic? In: Mason, R.E.A. (ed.) Proceedings of the IFIP 9th World Computer Congress, pp. 657–668. North-Holland/IFIP (1983)Google Scholar
  17. 17.
    Maksimova, L.: Temporal logics with “the next” operator do not have interpolation or the Beth property. Siberian Mathematical Journal 32(6), 989–993 (1991)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Niwinski, D.: Fixed Points vs. Infinite Generation. In: Proceedings of LICS, pp. 402–409 (1988)Google Scholar
  19. 19.
    Peled, D., Wilke, T.: Stutter-invariant temporal properties are expressible without the next-time operator. Inf. Process. Lett. 63(5), 243–246 (1997)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Thomas, W.: Languages, automata, and logic. In: Handbook of formal Languages. Beyond Words, vol. 3, pp. 389–455. Springer, New York (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Amélie Gheerbrant
    • 1
  • Balder ten Cate
    • 2
  1. 1.ILLCUniversiteit van AmsterdamNetherlands
  2. 2.INRIA and ENS CachanFrance

Personalised recommendations