Advertisement

An Effective Hybrid Algorithm Based on Simplex Search and Differential Evolution for Global Optimization

  • Ye Xu
  • Ling Wang
  • Lingpo Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5755)

Abstract

In this paper, an effective hybrid NM-DE algorithm is proposed for global optimization by merging the searching mechanisms of Nelder-Mead (NM) simplex method and differential evolution (DE). First a reasonable framework is proposed to hybridize the NM simplex-based geometric search and the DE-based evolutionary search. Second, the NM simplex search is modified to further improve the quality of solutions obtained by DE. By interactively using these two searching approaches with different mechanisms, the searching behavior can be enriched and the exploration and exploitation abilities can be well balanced. Based on a set of benchmark functions, numerical simulation and statistical comparison are carried out. The comparative results show that the proposed hybrid algorithm outperforms some existing algorithms including hybrid DE and hybrid NM algorithms in terms of solution quality, convergence rate and robustness.

Keywords

global optimization Nelder-Mead simplex search differential evolution hybrid algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nash, S.G., Sofer, A.: Linear and Nonlinear Programming. McGraw-Hill, New York (1996)Google Scholar
  2. 2.
    Huang, F.Z., Wang, L.: A Hybrid Differential Evolution with Double Populations for Constrained Optimization. In: IEEE CEC, pp. 18–25. IEEE Press, New York (2008)Google Scholar
  3. 3.
    Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, New York (2005)zbMATHGoogle Scholar
  4. 4.
    Rahman, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution. IEEE Transactions on Evolutionary Computation 12(1), 64–79 (2008)CrossRefGoogle Scholar
  5. 5.
    Isaacs, A., Ray, T., Smith, W.: A Hybrid Evolutionary Algorithm with Simplex Local Search. In: IEEE CEC, pp. 1701–1708. IEEE Press, New York (2007)Google Scholar
  6. 6.
    Fan, S.K.S., Zahara, E.: A Hybrid Simplex Search and Particle Swarm Optimization for Unconstrained Optimization. European J. Operational Research 181, 527–548 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. Computer J. 7(4), 308–313 (1965)zbMATHGoogle Scholar
  8. 8.
    Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM J. Optimization 9(1), 112–147 (1999)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ali, M.M.: Differential Evolution With Preferential Crossover. European J. Operational Research 181, 1137–1147 (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Storn, R., Price, K.: Differential Evolution - A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces. J. Global Optimization 11(4), 341–359 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Real-Parameter Optimization with Differential Evolution. Evolutionary Computation 2(1), 506–513 (2005)Google Scholar
  12. 12.
    Omran, M.G.H., Engelbrecht, A.P., Salman, A.: Bare Bones Differential Evolution. European J. Operational Research 196(1), 128–139 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Noman, N., Iba, H.: Accelerating Differential Evolution Using an Adaptive Local Search. IEEE Transactions on Evolutionary Computation 12(1), 107–125 (2008)CrossRefGoogle Scholar
  14. 14.
    Cohen, G., Ruch, P., Hilario, M.: Model Selection for Support Vector Classifiers via Direct Simplex Search. In: FLAIRS Conference, Florida, pp. 431–435 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ye Xu
    • 1
  • Ling Wang
    • 1
  • Lingpo Li
    • 1
  1. 1.Tsinghua National Laboratory for Information Science and Technology (TNList), Department of AutomationTsinghua UniversityBeijingP.R. China

Personalised recommendations