Advertisement

Variable Precision Concepts and Its Applications for Query Expansion

  • Fei Hao
  • Shengtong Zhong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5755)

Abstract

One of the most important tasks of search engines is presenting more additional relevant web pages and reducing those pages which are useless for users. Query expansion is an efficient method for dealing with this task. In this paper, variable precision concept(VPC) based on formal concept analysis(FCA) is firstly proposed and its properties are discussed. Then a new strategy of expanding query terms based on VPC is proposed. According to this new strategy, users can set the query precision in terms of their interests and obtain the additional relevance web pages. Finally, application results show the efficiency and effectiveness of this method.

Keywords

FCA variable precision concept query expansion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pawlak, Z.: Rough Sets. International Journal of Computer and Information Science 11(5), 341–356 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ganter, B., Wille, R.: Formal Concept Analysis. In: Mathematical Foundations. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    Zhang, W.X., Qiu, G.F.: Uncertain Decision Making Based on Rough Sets, pp. 12–58. Tsinghua University Publisher, Beijing (2005) (in Chinese)Google Scholar
  4. 4.
    Birkhoff, B.: Lattice Theory. American Mathematical Society Colloquium Publ., Providence (1973) (revised edition)Google Scholar
  5. 5.
    Wille, R.: Restructuring the Lattice Theory: An Approach Based on Hierarchies of Concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)Google Scholar
  6. 6.
    Wille, R.: Lattices in Data Analysis: How to Draw Them with a Computer. In: Algorithms and Order, pp. 33–58. Kluwer Acad. Publ., Dordrecht (1989)Google Scholar
  7. 7.
    Wille, R.: Concepe Lattices and Conceptual Knowledge Systems. Comput. Math. Apll. 23(6-9), 493–515 (1992)zbMATHCrossRefGoogle Scholar
  8. 8.
    Ganter, B., Stahl, J., Wille, R.: Concept Measurement and Many-Valued Contexts. In: Gaul, W., Schader, M. (eds.) Classification as a Tool of Research, pp. 169–176. Elsevier Science Publishers B.V, North-Holland (1986)Google Scholar
  9. 9.
    Ganter, B. (ed.): Two Basic Algorithms in Concept Analysis. Technische Hochschule, Darmstadt (1984)Google Scholar
  10. 10.
    Stumme, G., Taouil, R., Yves, B.C., Pasquier, N., Lakhal, L.: Computing Iceberg Concept Lattices with TITANIC. Data & Knowledge Engineering 42, 189–222 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Patrick, D.B.R., Derek, B.: Collaborative Recommending using Formal Concept Analysis. Knowledge-Based Systems 19(5), 309–315 (2006)CrossRefGoogle Scholar
  12. 12.
    Kim, M., Tom, T.: Delving Source Code with Formal Concept Analysis. Computer Languages, Systems & Structures 31(3-4), 183–197 (2005)CrossRefGoogle Scholar
  13. 13.
    Jitender, S.D., Jamil, S.: Monotone Concepts for Formal Concept Analysis. Discrete Applied Mathematics 144(1-2), 70–78 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Jiang, G.Q., Katsuhiko, O., Akira, E., Tsunetaro, S.: Context-Based Ontology Building Support in Clinical Domains using Formal Concept Analysis. International Journal of Medical Informatics 71(1), 71–81 (2003)CrossRefGoogle Scholar
  15. 15.
    Susanne, P.: Formal Concept Analysis for General Objects. Discrete Applied Mathematics 127(2), 337–355 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Karl, E.W.: Concepts in Fuzzy Scaling Theory: Order and Granularity. Fuzzy Sets and Systems 132(1), 63–75 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Valtchev, P., Missaoui, R., Lebrun, P.: A Partition-Based Approach towards Constructing Galois(Concept) Lattices. Discrete Mathematics 256(3), 801–829 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Agrawal, R., Imielinski, T.: Mining Association Rules between Sets of Items in Large Databases. In: Proceedings of the 1993 ACM-SIGMOD Int. Conference, Management of Data, Washington, D. C., pp. 207–216 (1993)Google Scholar
  19. 19.
    Bhogal, J., Macfarlane, A., Smith, P.: A Review of Ontology based Query Expansion. Information Processing and Management 43, 866–886 (2007)CrossRefGoogle Scholar
  20. 20.
    Jones, K.S.: Notes and References on Early Classification Work. SIGIR Forum 25(1), 10–17 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Fei Hao
    • 1
  • Shengtong Zhong
    • 2
  1. 1.Department of Computer ScienceKorea Advanced Institute of Science and TechnologyDaejeonKorea
  2. 2.Department of Computer and Information ScienceNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations