Neural Grammar Networks

  • Eddie Y. T. Ma
  • Stefan C. Kremer
Part of the Studies in Computational Intelligence book series (SCI, volume 247)

Background

Artificial Neural Networks (ANNs) (Haykin, 1998) are universal function approximators (Hornik et al., 1989) with adaptive behaviour based on gradient descent in error space (Werbos, 1994) and other methods. These networks have been applied to a wide variety of problems from a broad range of domains that can be formulated as vectorto- vector mappings. That is, the function to be approximated must be represented as a function whose domain and whose range are given by two vector spaces (Figure 1). Many methods have been used to translate data into such spaces. A variety of interesting problems, including those that process measurements from a fixed set of sensors naturally lend themselves to vector representations.When data is not easily encoded in fixed-size vectors, a number of transformations of data have been proposed including padding the data, frequency space representations, windowing and others.

Keywords

Androgen Receptor Hide Node Parse Tree Input String Recurrent Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anger, D.L., Foster, W.G.: The link between environmental toxicant exposure and endometriosis. Frontiers in bioscience: a journal and virtual library 1(13), 1578–1593 (2008)CrossRefGoogle Scholar
  2. bison, Bison - gnu parser generator (2008), http://www.gnu.org/software/bison/
  3. Blair, R.M., Fang, H., Branham, W.S., Hass, B.S., Dial, S.L., Moland, C.L., Tong, W., Shi, L., Perkins, R., Sheehan, D.M.: The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicological Sciences 54(1), 138–153 (2000)CrossRefGoogle Scholar
  4. Branham, W.S., Dial, S.L., Moland, C.L., Hass, B.S., Blair, R.M., Fang, H., Shi, L., Tong, W., Perkins, R.G., Sheehan, D.M.: Phytoestrogen and mycoestrogen bind to the rat uterine estrogen receptor. Journal of Nutrition 132(4), 658–664 (2002)Google Scholar
  5. Dalby, A., Nourse, J.G., Hounshell, W.D., Gushurst, A.K.I., Grier, D.L., Leland, B.A., Laufer, J.: Description of several chemical structure file formats used by computer programs developed at molecular design limited. Journal of chemical information and computer sciences 32(3), 244–255 (1992)Google Scholar
  6. de, A., Barreto, G., Araújo, A.F.R., Kremer, S.C.: A taxonomy for spatiotemporal connectionist networks revisited: the unsupervised case. Neural Compututation 15(6), 1255–1320 (2003)MATHCrossRefGoogle Scholar
  7. Fang, H., Tong, W.D., Branham, W.S., Moland, C.L., Dial, S.L., Hong, H.X., Xie, Q., Perkins, R., Owens, W., Sheehan, D.M.: Study of 202 natural, synthetic and environmental chemicals for binding to the androgen receptor. Chemical research in toxicology 16(10), 1338–1358 (2003)CrossRefGoogle Scholar
  8. flex (2008), flex - the fast lexical analyzer, http://flex.sourceforge.net/
  9. Frasconi, P., Gori, M., Kuechler, A., Sperduti, A.: From sequences to data structures: Theory and applications. In: Kolen, J., Kremer, S. (eds.) A Field Guide to Dynamic Recurrent Networks, pp. 351–374. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  10. Fu, K.-S.: Syntactic Pattern Recognition and Applications. Longman Higher Education (1982)Google Scholar
  11. GOLD Parsing System, Gold parsing system - a free, multi-programming language, parser generator (2008), http://www.devincook.com/goldparser/
  12. Guha, R., Howard, M.T., Hutchison, G.R., Murray-Rust, P., Rzepa, H., Steinbeck, C., Wegner, J.K., Willighagen, E.: The blue obelisk – interoperability in chemical informatics. Journal of chemical information and modeling 46(3), 991–998 (2006)CrossRefGoogle Scholar
  13. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  14. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In: Kolen, J., Kremer, S. (eds.) A Field Guide to Dynamic Recurrent Networks, pp. 237–243. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  15. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359–366 (1989)CrossRefGoogle Scholar
  16. James, C.A.: Opensmiles specification (2007), http://www.opensmiles.org/spec/open-smiles.html
  17. Kolen, J.F., Kremer, S.C. (eds.): A Field Guide to Dynamical Recurrent Networks. Wiley-IEEE Press (2001)Google Scholar
  18. Kremer, S.C.: On the computational power of Elman-style recurrent networks. IEEE Transactions on Neural Networks 6(4), 1000–1004 (1995)CrossRefGoogle Scholar
  19. Kremer, S.C.: Spatiotemporal connectionist networks: A taxonomy and review. Neural Computation 13(2), 249–306 (2001)MATHCrossRefGoogle Scholar
  20. NCTR, Nctr center for toxicoinformatics - edkb home page(2007), http://www.fda.gov/nctr/science/centers/toxicoinformatics/edkb/index.htm
  21. OpenBabel, The open babel package, version 2.1.1 (2008), http://www.openbabel.org
  22. Rumberlhart, D., Hinton, G., Williams, R.: Chapter 9: Learning internal representation by error propagation. In: McClelland, J.L., Rumelhart, D., P.D.P. Group (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Foundations, vol. 1, MIT Press, Cambridge (1986)Google Scholar
  23. Shi, L.M., Fang, H., Tong, W., Wu, J., Perkins, R., Blair, R.M., Branham, W.S., Dial, S.L., Moland, C.L., Sheehan, D.M.: Qsar models using a large diverse set of estrogens. Journal of Chemical Information and Computer Sciences 41(1), 186–195 (2001)Google Scholar
  24. Stein, S.E., Heller, S.R., Tchekhovskoi, D.V.: The IUPAC Chemical Identifier Technical Manual. Gaithersburg, Maryland, USA (2006), http://old.iupac.org/inchi/download/index.html
  25. Tong, W., Hong, H., Fang, H., Xie, Q., Perkins, R.: Decision forest: Combining the predictions of multiple independent decision tree models. Journal of Chemical Information and Computer Sciences 43(2), 525–531 (2003)Google Scholar
  26. Werbos, P.J.: The roots of backpropagation: from ordered derivatives to neural networks and political forecasting. Wiley Interscience, New York (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Eddie Y. T. Ma
  • Stefan C. Kremer

There are no affiliations available

Personalised recommendations