Caroline: An Autonomously Driving Vehicle for Urban Environments

  • Fred W. Rauskolb
  • Kai Berger
  • Christian Lipski
  • Marcus Magnor
  • Karsten Cornelsen
  • Jan Effertz
  • Thomas Form
  • Fabian Graefe
  • Sebastian Ohl
  • Walter Schumacher
  • Jörn-Marten Wille
  • Peter Hecker
  • Tobias Nothdurft
  • Michael Doering
  • Kai Homeier
  • Johannes Morgenroth
  • Lars Wolf
  • Christian Basarke
  • Christian Berger
  • Tim Gülke
  • Felix Klose
  • Bernhard Rumpe
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 56)

Abstract

The 2007 DARPA Urban Challenge afforded the golden opportunity for the Technische Universität Braunschweig to demonstrate its abilities to develop an autonomously driving vehicle to compete with the world’s best competitors. After several stages of qualification, our team CarOLO qualified early for the DARPA Urban Challenge Final Event and was among only eleven teams from initially 89 competitors to compete in the final. We had the ability to work together in a large group of experts, each contributing his expertise in his discipline, and significant organisational, financial and technical support by local sponsors who helped us to become the best non-US team.

In this report, we describe the 2007 DARPA Urban Challenge, our contribution ”Caroline”, the technology and algorithms along with her performance in the DARPA Urban Challenge Final Event on November 3, 2007.

References

  1. Basarke, C., Berger, C., Homeier, K., Rumpe, B.: Design and quality assurance of intelligent vehicle functions in the ”virtual vehicle”. Virtual Vehicle Creation (2007a)Google Scholar
  2. Basarke, C., Berger, C., Rumpe, B.: Software & systems engineering process and tools for the development of autonomous driving intelligence. Journal of Aerospace Computing, Information, and Communication 4 (2007b)Google Scholar
  3. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading (2005)Google Scholar
  4. Beedle, M., Schwaber, K.: Agile Software Development with Scrum. Prentice-Hall, Englewood Cliffs (2002)Google Scholar
  5. Bilmes, J.: A gentle tutorial on the em algorithm and its application to parameter estimation for gaussian mixture and hidden markov models. Technical report (1997)Google Scholar
  6. Collins-Sussmann, B., Fitzpatrick, B.W., Pilato, C.M.: Version Control with Subversion. O’Reilly, Sebastopol (2004)Google Scholar
  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. (2002)Google Scholar
  8. DARPA, Technical evaluation criteria (2006)Google Scholar
  9. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley & Sons Inc., Chichester (1973)MATHGoogle Scholar
  10. Edgewall Software, Trac. Edgewall Software (2007)Google Scholar
  11. Bradski, G., Adrian Kaehler, V.P.: Learning-based computer vision with intels open source computer vision library, pp. 126–139 (2005)Google Scholar
  12. Heikkil, J., Silvn, O.: Calibration procedure for short focal length off-the-shelf ccd cameras. In: 13th International Conference on Pattern Recognition, Vienna, Austria, pp. 166–170 (1996)Google Scholar
  13. Kalman, R.E.: A new approach to linear filtering and prediction problems. In: Transactions of the ASME-Journal of Basic Engineering, pp. 35–45 (1960)Google Scholar
  14. Liggesmeyer, P.: Software-Qualitaet: Testen, Analysieren und Verifizieren von Software. Spektrum, Akad. Verl. (2002)Google Scholar
  15. Nethercote, N., Seward, J.: Valgrind: A program supervising framework. Theoretical Computer Science 89 (2003)Google Scholar
  16. OpenCV Website, The open cv library (2007)Google Scholar
  17. Pitteway, M.L.V.: Algorithmn for drawing ellipses or hyperbolae with a digital plotter. Computer Journal 10(3), 282–289 (1967)CrossRefGoogle Scholar
  18. Rosenblatt, J.: DAMN: A Distributed Architecture for Mobile Navigation. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (1997)Google Scholar
  19. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)MATHGoogle Scholar
  20. Shafer, G.: Perspectives on the theory and practice of belief functions. International Journal of Approximate Reasoning (3), 1–40 (1990)Google Scholar
  21. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C., Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P.: Winning the darpa grand challenge. Journal of Field Robotics (2006)Google Scholar
  22. Ulrich, I., Nourbakhsh, I.: Appearance-based obstacle detection with monocular color vision. In: Proceedings of the AAAI National Conference on Artificial Intelligence, Austin, TX, pp. 866–871 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Fred W. Rauskolb
    • 1
  • Kai Berger
    • 2
  • Christian Lipski
    • 2
  • Marcus Magnor
    • 2
  • Karsten Cornelsen
    • 3
  • Jan Effertz
    • 3
  • Thomas Form
    • 3
  • Fabian Graefe
    • 3
  • Sebastian Ohl
    • 3
  • Walter Schumacher
    • 3
  • Jörn-Marten Wille
    • 3
  • Peter Hecker
    • 4
  • Tobias Nothdurft
    • 4
  • Michael Doering
    • 5
  • Kai Homeier
    • 5
  • Johannes Morgenroth
    • 5
  • Lars Wolf
    • 5
  • Christian Basarke
    • 6
  • Christian Berger
    • 6
  • Tim Gülke
    • 6
  • Felix Klose
    • 6
  • Bernhard Rumpe
    • 6
  1. 1.Herzfeld & Rubin, P.C.New York
  2. 2.Institute of Computer GraphicsBraunschweigGermany
  3. 3.Institute of Control EngineeringBraunschweigGermany
  4. 4.Institute of Flight GuidanceBraunschweigGermany
  5. 5.Institute of Operating Systems and Computer NetworksBraunschweigGermany
  6. 6.Institute of Software Systems EngineeringBraunschweigGermany

Personalised recommendations