Robotic Implementation of Realistic Reaching Motion Using a Sliding Mode/Operational Space Controller

  • Adam Spiers
  • Guido Herrmann
  • Chris Melhuish
  • Tony Pipe
  • Alexander Lenz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5744)

Abstract

It has been shown that a task-level controller with minimal-effort posture control produces human-like motion in simulation. This control approach is based on the dynamic model of a human skeletal system superimposed with realistic muscle like actuators whose effort is minimised. In practical application, there is often a degree of error between the dynamic model of a system used for controller derivation and the actual dynamics of the system. We present a practical application of the task-level control framework with simplified posture control in order to produce life-like and compliant reaching motions for a redundant task. The addition of a sliding mode controller improves performance of the physical robot by compensating for unknown parametric and dynamic disturbances without compromising the human-like posture.

Keywords

Robotics Sliding Mode Operational Space Human Motion Parametric Uncertainty Friction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bicchi, A., Peshkin, M.A., Colgate, J.E.: Safety for physical human-robot interaction. In: Springer Handbook of Robotics, pp. 1335–1348 (2008)Google Scholar
  2. 2.
    Craig, J.J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Pearson Prentice Hall, Upper Saddle River (2005)Google Scholar
  3. 3.
    De Sapio, V., Warren, J., Khatib, O.: Predicting reaching postures using a kinematically constrained shoulder model. Advances in Robot Kinematics 3, 209–218 (2006)CrossRefMATHGoogle Scholar
  4. 4.
    De Sapio, V., Warren, J., Khatib, O., Delp, S.: Simulating the task-level control of human motion: a methodology and framework for implementation. The Visual Computer 21(5), 289–302 (2005)CrossRefGoogle Scholar
  5. 5.
    Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: Opensim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering 54(11), 1940–1950 (2007)CrossRefGoogle Scholar
  6. 6.
    Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. Taylor and Francis, London (1998)MATHGoogle Scholar
  7. 7.
    Flash, T., Hogan, N.: The coordination of arm movements: An experimentally confirmed mathematical model. Journal of neuroscience 5, 1688–1703 (1985)Google Scholar
  8. 8.
    Hermann, G., Ge, S.S., Guo, G.: Discrete linear control enhanced by adaptive neural networks in application to a HDD-servo system. Control Engineering Practice 16(8), 930–945 (2008)CrossRefGoogle Scholar
  9. 9.
    Khatib, O., Sentis, L., Park, J., Warren, J.: Whole body dynamic behaviour and control of human-like robots. International Journal of Humanoid Robotics 1(1), 29–43 (2004)CrossRefGoogle Scholar
  10. 10.
    Lacquaniti, F., Soechting, J.F.: Coordination of arm and wrist motion during a reaching task. The Journal of Neuroscience 2(4), 399–408 (1982)Google Scholar
  11. 11.
    Uno, Y., Kwato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement. Biological Cybernetics 26, 109–124 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Adam Spiers
    • 1
    • 2
  • Guido Herrmann
    • 2
  • Chris Melhuish
    • 1
  • Tony Pipe
    • 1
  • Alexander Lenz
    • 1
  1. 1.Bristol Robotics LaboratoryBristolUnited Kingdom
  2. 2.Department of Mechanical EngineeringUniversity of BristolBristolUnited Kingdom

Personalised recommendations