Temporal Data Classification Using Linear Classifiers

  • Peter Revesz
  • Thomas Triplet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5739)


Data classification is usually based on measurements recorded at the same time. This paper considers temporal data classification where the input is a temporal database that describes measurements over a period of time in history while the predicted class is expected to occur in the future. We describe a new temporal classification method that improves the accuracy of standard classification methods. The benefits of the method are tested on weather forecasting using the meteorological database from the Texas Commission on Environmental Quality.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)MATHGoogle Scholar
  2. 2.
    Anderson, S., Revesz, P.: Efficient maxcount and threshold operators of moving objects. Geoinformatica 13 (2009)Google Scholar
  3. 3.
    Bishop, B., Fischer, F., Keller, U., Steinmetz, N., Fuchs, C., Pressnig, M.: Integrated Rule Inference System (2008), www.iris-reasoner.org
  4. 4.
    Brodsky, A., Segal, V., Chen, J., Exarkhopoulo, P.: The CCUBE constraint object-oriented database system. Constraints 2(3-4), 245–277 (1997)CrossRefMATHGoogle Scholar
  5. 5.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines (2001), www.csie.ntu.edu.tw/~cjlin/libsvm
  6. 6.
    Chomicki, J., Haesevoets, S., Kuijpers, B., Revesz, P.: Classes of spatiotemporal objects and their closure properties. Annals of Mathematics and Artificial Intelligence 39(4), 431–461 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Codd, E.F.: A relational model for large shared data banks. Communications of the ACM 13(6), 377–387 (1970)CrossRefMATHGoogle Scholar
  8. 8.
    Geist, I.: A framework for data mining and KDD. In: Proc. ACM Symposium on Applied Computing, pp. 508–513. ACM Press, New York (2002)Google Scholar
  9. 9.
    Grumbach, S., Rigaux, P., Segoufin, L.: The DEDALE system for complex spatial queries. In: Proc. ACM SIGMOD International Conference on Management of Data, pp. 213–224 (1998)Google Scholar
  10. 10.
    Güting, R., Schneider, M.: Moving Objects Databases. Morgan Kaufmann, San Francisco (2005)MATHGoogle Scholar
  11. 11.
    Johnson, T., Lakshmanan, L.V., Ng, R.T.: The 3W model and algebra for unified data mining, pp. 21–32 (2000)Google Scholar
  12. 12.
    Kanellakis, P.C., Kuper, G.M., Revesz, P.: Constraint query languages. Journal of Computer and System Sciences 51(1), 26–52 (1995)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kuper, G.M., Libkin, L., Paredaens, J. (eds.): Constraint Databases. Springer, Heidelberg (2000)MATHGoogle Scholar
  14. 14.
    Qin, Y., Obradovic, Z.: Efficient learning from massive spatial-temporal data through selective support vector propagation. In: 17th European Conference on Artificial Intelligence, pp. 526–530 (2006)Google Scholar
  15. 15.
    Quinlan, J.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)Google Scholar
  16. 16.
    Ramakrishnan, R.: Database Management Systems. McGraw-Hill, New York (1998)MATHGoogle Scholar
  17. 17.
    Revesz, P.: Introduction to Constraint Databases. Springer, Heidelberg (2002)MATHGoogle Scholar
  18. 18.
    Revesz, P., Chen, R., Kanjamala, P., Li, Y., Liu, Y., Wang, Y.: The MLPQ/GIS constraint database system. In: Proc. ACM SIGMOD International Conference on Management of Data (2000)Google Scholar
  19. 19.
    Revesz, P., Triplet, T.: Reclassification of linearly classified data using constraint databases. In: 12th East European Conference on Advances of Databases and Information Systems, pp. 231–245 (2008)Google Scholar
  20. 20.
    Revesz, P., Wu, S.: Spatiotemporal reasoning about epidemiological data. Artificial Intelligence in Medicine 38(2), 157–170 (2006)CrossRefGoogle Scholar
  21. 21.
    Rigaux, P., Scholl, M., Voisard, A.: Introduction to Spatial Databases: Applications to GIS. Morgan Kaufmann, San Francisco (2000)Google Scholar
  22. 22.
    Tseng, V.S., Lee, C.-H.: Effective temporal data classification by integrating sequential pattern mining and probabilistic induction. Expert Systems with Applications 36(5), 9524–9532 (2009)CrossRefGoogle Scholar
  23. 23.
    Ullman, J.D.: Principles of Database and Knowledge-Base Systems. Computer Science Press (1989)Google Scholar
  24. 24.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Peter Revesz
    • 1
  • Thomas Triplet
    • 1
  1. 1.University of Nebraska - LincolnLincolnUSA

Personalised recommendations