ART-Based Neural Networks for Multi-label Classification

  • Elena P. Sapozhnikova
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5772)

Abstract

Multi-label classification is an active and rapidly developing research area of data analysis. It becomes increasingly important in such fields as gene function prediction, text classification or web mining. This task corresponds to classification of instances labeled by multiple classes rather than just one. Traditionally, it was solved by learning independent binary classifiers for each class and combining their outputs to obtain multi-label predictions. Alternatively, a classifier can be directly trained to predict a label set of an unknown size for each unseen instance. Recently, several direct multi-label machine learning algorithms have been proposed. This paper presents a novel approach based on ART (Adaptive Resonance Theory) neural networks. The Fuzzy ARTMAP and ARAM algorithms were modified in order to improve their multi-label classification performance and were evaluated on benchmark datasets. Comparison of experimental results with the results of other multi-label classifiers shows the effectiveness of the proposed approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schapire, R.E., Singer, Y.: BoosTexter: a Boosting-based System for Text Categorization. Machine Learning 39, 135–168 (2000)CrossRefMATHGoogle Scholar
  2. 2.
    Elisseeff, A., Weston, J.: A Kernel Method for Multi-labelled Classification. In: Advances in Neural Information Processing Systems, pp. 681–687 (2001)Google Scholar
  3. 3.
    Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Boutell, M.R., Shen, X., Luo, J., Brown, C.: Learning Multi-label Semantic Scene Classification. Pattern Recognition 37, 1757–1771 (2004)CrossRefGoogle Scholar
  5. 5.
    Zhang, M.-L., Zhou, Z.-H.: A k-Nearest Neighbor Based Algorithm for Multi-label Classification. In: International Conference on Granular Computing, pp. 718–721 (2005)Google Scholar
  6. 6.
    Zhang, M.-L., Zhou, Z.-H.: ML-kNN: A Lazy Learning Approach to Multi-label Learning. Pattern Recognition 40, 2038–3048 (2007)CrossRefMATHGoogle Scholar
  7. 7.
    Younes, Z., Abdallah, F., Denoeux, T.: Multi-label Classification Algorithm Derived from k-Nearest Neighbor Rule with Label Dependencies. In: 16th European Signal Processing Conference (2008)Google Scholar
  8. 8.
    Zhang, M.-L., Zhou, Z.-H.: Multi-label Neural Networks with Applications to Functional Genomics and Text Categorization. IEEE transactions on Knowledge and Data Engineering 18, 1338–1351 (2006)CrossRefGoogle Scholar
  9. 9.
    Clare, A., King, R.D.: Knowledge Discovery in Multi-label Phenotype Data. In: 5th European Conference on Principles of Data Mining and Knowledge Discovery, pp. 42–53 (2001)Google Scholar
  10. 10.
    Blockeel, H., Bruynooghe, M., Džeroski, S., Ramon, J., Struyf, J.: Hierarchical Multi-classification. In: First International Workshop on Multi-Relational Data Mining, pp. 21–35 (2002)Google Scholar
  11. 11.
    Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision Trees for Hierarchical Multi-label Classification. Machine Learning 73, 185–214 (2008)CrossRefGoogle Scholar
  12. 12.
    Suzuki, E., Gotoh, M., Choki, Y.: Bloomy Decision Tree for Multi-objective Classification. In: 5th European Conference on Principles of Data Mining and Knowledge Discovery, pp. 436–447 (2001)Google Scholar
  13. 13.
    Comité, F.D., Gilleron, R., Tommasi, M.: Learning Multi-label Alternating Decision Trees from Texts and Data. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS, vol. 2734, pp. 251–274. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Carpenter, G., et al.: Fuzzy ARTMAP: A Neural Network Architecture for Incremental Supervised Learning of Analog Multidimensional Maps. IEEE transactions on Neural Networks 3, 698–713 (1992)CrossRefGoogle Scholar
  15. 15.
    Tan, A.-H.: Adaptive Resonance Associative Map. Neural Networks 8, 437–446 (1995)CrossRefGoogle Scholar
  16. 16.
    Carpenter, G., Martens, S., Ogas, O.: Self-organizing Information Fusion and Hierarchical Knowledge Discovery: a New Framework Using ARTMAP Neural Networks. Neural Networks 18, 287–295 (2005)CrossRefGoogle Scholar
  17. 17.
    Carpenter, G., Ross, W.D.: ART-EMAP: A Neural Network Architecture for Object Recognition by Evidence Accumulation. IEEE Transactions on Neural Networks 6, 805–818 (1995)CrossRefGoogle Scholar
  18. 18.
    Carpenter, G.A.: Default ARTMAP. In: International Joint Conference on Neural Networks (IJCNN), pp. 1396–1401 (2003)Google Scholar
  19. 19.
    Sapojnikova, E.: ART-based Fuzzy Classifiers: ART Fuzzy Networks for Automatic Classification. Cuvillier Verlag, Goettingen (2004)Google Scholar
  20. 20.
    Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel Classification of Music into Emotions. In: 9th International Conference on Music Information Retrieval, ISMIR (2008)Google Scholar
  21. 21.
    Tsoumakas, G., Vlahavas, I.P.: Random k-labelsets: An ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Elena P. Sapozhnikova
    • 1
  1. 1.Department of Computer and Information ScienceUniversity of KonstanzKonstanzGermany

Personalised recommendations