Fast Implicit Simulation of Oscillatory Flow in Human Abdominal Bifurcation Using a Schur Complement Preconditioner

  • K. Burckhardt
  • D. Szczerba
  • J. Brown
  • K. Muralidhar
  • G. Székely
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5704)


We evaluate a parallel Schur preconditioner for large systems of equations arising from a finite element discretization of the Navier-Stokes equations with streamline diffusion. The performance of the method is assessed on a biomedical problem involving oscillatory flow in a human abdominal bifurcation. Fast access to flow conditions in this location might support physicians in quicker decision making concerning potential interventions. We demonstrate scaling to 8 processors with more than 50% efficiency as well as a significant relaxation of memory requirements. We found an acceleration by up to a factor 9.5 compared to a direct sparse parallel solver at stopping criteria ensuring results similar to a validated reference solution.


Aortic aneurysm flow simulation streamline diffusion FEM indefinite matrix parallel Krylov solver 


  1. 1.
    Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., Curfman McInnes, L., Smith, B.F., Zhang, H.: PETSc Web page (2001),
  2. 2.
    Demmel, J.W., Heath, M.T., van der Vorst, H.A.: Parallel numerical linear algebra. Acta Numer. 2, 111–197 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dongarra, J.J., Duff, I.S., Sorensen, D.C., van der Vorst, H.A.: Numerical Linear Algebra for High-Performance Computers. SIAM Press, Philadelphia (1998)CrossRefzbMATHGoogle Scholar
  4. 4.
    Elman, H.C.: Preconditioning strategies for models of incompressible flow. Journal of Scientific Computing 25, 347–366 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ferziger, J.H., Tseng, Y.H.: A coordinate system independent streamwise upwind method for fluid flow computation. International Journal for Numerical Methods in Fluids 45, 1235–1247 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Computer Methods in Applied Mechanics and Engineering 195, 6011–6045 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Elman, H., Howle, V., Shadid, J., Shuttleworth, R., Tuminaro, R.: Block preconditioners based on approximate commutators. SIAM J. Sci. Comput 27(5), 1651–1668 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Elman, H., Howle, V., Shadid, J., Shuttleworth, R., Tuminaro, R.: A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible navier-stokes equations. Journal of Computational Physics 227(1), 1790–1808 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hendrickson, B., Leland, R.: The chaco user’s guide: Version 2.0. Technical Report SAND 94–2692, Sandia (1994)Google Scholar
  10. 10.
    Kay, D., Loghin, D., Wathen, A.: A preconditioner for the steady-state navier-stokes equations. SIAM J. Sci. Comput. 24(1), 237–256 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    May, D.A., Moresi, L.: Preconditioned iterative methods for stokes flow problems arising in computational geodynamics. Physics of Earth and Planetary Interiors 171, 33–47 (2008)CrossRefGoogle Scholar
  12. 12.
    McGregor, R.H.P., Szczerba, D., Székely, G.: A multiphysics simulation of a healthy and a diseased abdominal aorta. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 227–234. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput 21(6), 1969–1972 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York (1980)zbMATHGoogle Scholar
  15. 15.
    Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transfer 15, 1787–1806 (1972)CrossRefzbMATHGoogle Scholar
  16. 16.
    Saad, Y.: A flexible inner-outer preconditioned gmres. SIAM J. Sci. Comput 14(2), 461–469 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with pardiso. Journal of Future Generation Computer Systems 20(3), 475–487 (2002)CrossRefzbMATHGoogle Scholar
  18. 18.
    Szczerba, D., McGregor, R., Muralidhar, K., Székely, G.: Mechanism and localization of wall failure during abdominal aortic aneurysm formation. Biomedical Simulation 5104, 119–126 (2008)CrossRefGoogle Scholar
  19. 19.
    Uzawa, H.: Iterative methods for concave programming. In: Arrow, K.J., Hurwicz, L., Uzawa, H. (eds.) Studies in Linear and Nonlinear Programming, pp. 154–165 (1958)Google Scholar
  20. 20.
    Van Emden, H., Meier Yang, U.: Boomeramg: A parallel algebraic multigrid solver and preconditioner. Applied Numerical Mathematics 41, 155–177 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wesley, P., Arbenz, P.: Introduction to Parallel Computing. Oxford University Press, Oxford (2004)zbMATHGoogle Scholar
  22. 22.
    Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, 5th edn. Butterworth-Heinemann, Butterworth (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • K. Burckhardt
    • 1
  • D. Szczerba
    • 1
    • 2
  • J. Brown
    • 3
  • K. Muralidhar
    • 4
  • G. Székely
    • 1
  1. 1.Department of Electrical EngineeringETHZürichSwitzerland
  2. 2.IT’IS Foundation for ResearchZürichSwitzerland
  3. 3.Laboratory of Hydraulics, Hydrology and GlaciologyETHZürichSwitzerland
  4. 4.Department of Mechanical EngineeringIIT KanpurIndia

Personalised recommendations