Surfing Peer-to-Peer IPTV: Distributed Channel Switching

  • A. -M. Kermarrec
  • E. Le Merrer
  • Y. Liu
  • G. Simon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5704)


It is now common for IPTV systems attracting millions of users to be based on a peer-to-peer (P2P) architecture. In such systems, each channel is typically associated with one P2P overlay network connecting the users. This significantly enhances the user experience by relieving the source from dealing with all connections. Yet, the joining process resulting in a peer to be integrated in channel overlay usually requires a significant amount of time. As a consequence, switching from one channel to another is far to be as fast as in IPTV solutions provided by telco operators. In this paper, we tackle the issue of efficient channel switching in P2P IPTV system. This is to the best of our knowledge the first study on this topic. First, we conducted and analyzed a set of measurements of one of the most popular P2P systems (PPlive). These measurements reveal that the set of contacts that a joining peer receives from the central server are of the utmost importance in the start-up process. On those neigbors, depends the speed to acquire the first video frames to play. We then formulate the switching problem, and propose a simple distributed algorithm, as an illustration of the concept, which aims at leveraging the presence of peers in the network to fasten the switch process. The principle is that each peer maintains as neighbors peers involved in other channels, providing peers with good contacts upon channel switching. Finally, simulations show that our approach leads to substantial improvements on the channel switching time. As our algorithmic solution does not have any prerequisite on the overlays, it appears to be an appealing add-on for existing P2P IPTV systems.


Video Packet Channel Switching Iptv Service Overlay Graph Switching Problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
    Boong Lee, D., Joo, H., Song, H.: An effective channel control algorithm for integrated iptv services over docsis catv networks. IEEE Transactions on Broadcasting 53, 789–796 (2007)CrossRefGoogle Scholar
  4. 4.
    Boudani, A., Chen, Y., Simon, G.: A quicker way to discover nearby peers. In: Proc. of the ACM CoNEXT Conference (2007)Google Scholar
  5. 5.
    Cha, M., Rodriguez, P., Crowcroft, J., Moon, S., Amatrianin, X.: Watching television over an ip network. In: Proc. of Usenix/ACM SIGCOMM Internet Measurement Conference (IMC) (October 2008)Google Scholar
  6. 6.
    Cha, M., Rodriguez, P., Moon, S., Crowcroft, J.: On next-generation telco-managed p2p tv architectures. In: Proc. of International Workshop on Peer-To-Peer Systems (IPTPS) (February 2008)Google Scholar
  7. 7.
    Cho, C., Han, I., Jun, Y., Lee, H.: Improvement of channel zapping time in iptv services using the adjacent groups join-leave method. In: Proc. of Int. Conf. on Advanced Communication Technology, ICACT (2004)Google Scholar
  8. 8.
    Haynes, T.W., Hedetniemi, S., Slater, P.: Fundamentals of domination graphs. CRC Press, Boca Raton (1998)MATHGoogle Scholar
  9. 9.
    He, Y., Shen, G., Xiong, Y., Guan, L.: Optimal prefetching scheme in p2p vod applications with guided seeks. IEEE Transactions on Multimedia 11(1), 138–151 (2009)CrossRefGoogle Scholar
  10. 10.
    Hei, X., Liang, C., Liang, J., Liu, Y., Ross, K.W.: A measurement study of a large-scale p2p iptv system. IEEE Transactions on Multimedia 9(8), 1672–1687 (2007)CrossRefGoogle Scholar
  11. 11.
    Jelasity, M., Babaoglu, O.: T-man: Gossip-based overlay topology management. In: ESOA, Intl’l Work. on Engineering Self-Organising Systems (2005)Google Scholar
  12. 12.
    Jelasity, M., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: The peer sampling service: Experimental evaluation of unstructured gossip-based implementations. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 79–98. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Lee, J., Lee, G., Seok, S.-H., Chung, B.-D.: Advanced scheme to reduce IPTV channel zapping time. In: Ata, S., Hong, C.S. (eds.) APNOMS 2007. LNCS, vol. 4773, pp. 235–243. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Li, B., Qu, Y., Keung, Y., Xie, S., Lin, C., Liu, J., Zhang, X.: Inside the new coolstreaming: Principles, measurements and performance implications. In: INFOCOM 2008: Proc. of 27th IEEE Int. Conf. on Computer Communications (April 2008)Google Scholar
  15. 15.
    Qiu, T., Ge, Z., Lee, S., Wang, J., Zhao, Q., Xu, J.: Modeling channel popularity dynamics in a large iptv system. In: Proc. of ACM Sigmetrics (2009)Google Scholar
  16. 16.
    Sentinelli, A., Marfia, G., Gerla, M., Tewari, S., Kleinrock, L.: Will IPTV Ride the Peer-to-Peer Stream? IEEE Communications Magazine 45(6), 86 (2007)CrossRefGoogle Scholar
  17. 17.
    Voulgaris, S., Gavidia, D., van Steen, M.: Cyclon: Inexpensive membership management for unstructured p2p overlays. Journal of Network and Systems Management 13(2), 197–217 (2005)CrossRefGoogle Scholar
  18. 18.
    Wu, C., Li, B., Zhao, S.: Multi-channel live p2p streaming: Refocusing on servers. In: Proc. of IEEE INFOCOM, pp. 1355–1363 (2008)Google Scholar
  19. 19.
    Wu, D., Liu, Y., Ross, K.W.: Queuing network models for multi-channel p2p live streaming systems. In: Proc. of IEEE INFOCOM (2009)Google Scholar
  20. 20.
    Zheng, C., Shen, G., Li, S.: Distributed prefetching scheme for random seek support in peer-to-peer streaming applications. In: Proc. of the ACM workshop on Advances in peer-to-peer multimedia streaming (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A. -M. Kermarrec
    • 1
  • E. Le Merrer
    • 1
  • Y. Liu
    • 2
    • 3
  • G. Simon
    • 2
  1. 1.INRIA Centre Rennes - Bretagne AtlantiqueFrance
  2. 2.Institut TELECOM - TELECOM BretagneFrance
  3. 3.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsChina

Personalised recommendations