POGGI: Puzzle-Based Online Games on Grid Infrastructures

  • Alexandru Iosup
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5704)


Massively Multiplayer Online Games (MMOGs) currently entertain millions of players daily. To keep these players online and generate revenue, MMOGs are currently relying on manually generated content such as logical challenges (puzzles). Under increased demands for personalized content from a growing community, it has become attractive to generate personalized puzzle game content automatically. In this work we investigate the automated puzzle game content generation for MMOGs on grid infrastructures. First, we characterize the requirements of this novel grid application. With long-term real traces taken from a popular MMOG we show that hundreds of thousands of players are simultaneously online during peak periods, which makes content generation a large-scale compute-intensive problem. Second, we design the POGGI architecture to support this type of application. We assess the performance of our reference implementation in a real environment by running over 200,000 tasks in a pool of over 1,600 nodes, and demonstrate that POGGI can generate commercial-quality content efficiently and robustly.


Content Generation Online Game Capacity Planning Grid Infrastructure Execution Engine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Woodcock, B.S.: An analysis of mmog subscription growth. Online Report (2009),
  2. 2.
    Nae, V., Iosup, A., Podlipnig, S., Prodan, R., Epema, D.H.J., Fahringer, T.: Efficient management of data center resources for massively multiplayer online games. In: ACM/IEEE SuperComputing (2008)Google Scholar
  3. 3.
    Bartle, R.: Designing Virtual Worlds. New Riders Games (2003) ISBN 0131018167Google Scholar
  4. 4.
    Kasparov, G.: Chess Puzzles Book. Everyman Chess (2001)Google Scholar
  5. 5.
    Polgar, L.: Chess: 5334 Problems, Combinations and Games. Leventhal (2006)Google Scholar
  6. 6.
    Braben, D., Bell, I.: “Elite”, Acornsoft, 1984 (2009),
  7. 7.
    Biskup, T.: “ADOM”, Free (1994), (2009)
  8. 8.
    Schaefer, E., et al.: “Diablo I”, Blizzard Entertainment (1997), (2009)
  9. 9.
    Adams, T.: “Dwarf Fortress”, Free (2006), (2009)
  10. 10.
    Neumann, C., Prigent, N., Varvello, M., Suh, K.: Challenges in peer-to-peer gaming. Computer Communication Review 37(1), 79–82 (2007)CrossRefGoogle Scholar
  11. 11.
    White, W.M., Koch, C., Gupta, N., Gehrke, J., Demers, A.J.: Database research opportunities in computer games. SIGMOD Record 36(3), 7–13 (2007)CrossRefGoogle Scholar
  12. 12.
    White, W.M., Demers, A.J., Koch, C., Gehrke, J., Rajagopalan, R.: Scaling games to epic proportion. In: ACM SIGMOD ICMD, pp. 31–42. ACM, New York (2007)Google Scholar
  13. 13.
    Müller, J., Gorlatch, S.: Rokkatan: scaling an rts game design to the massively multiplayer realm. Computers in Entertainment 4(3) (2006)Google Scholar
  14. 14.
    The Entertainment Software Association, “2008 annual report,” Technical Report, (November 2008)
  15. 15.
    Fritsch, T., Ritter, H., Schiller, J.H.: The effect of latency and network limitations on mmorpgs: a field study of everquest2. In: NETGAMES. ACM, New York (2005)Google Scholar
  16. 16.
    Iosup, A., Dumitrescu, C., Epema, D.H.J., Li, H., Wolters, L.: How are real grids used? the analysis of four grid traces and its implications. In: GRID, pp. 262–269. IEEE, Los Alamitos (2006)Google Scholar
  17. 17.
    Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: modeling the characteristics of rigid jobs. J. PDC 63(11), 1105–1122 (2003)zbMATHGoogle Scholar
  18. 18.
    Iosup, A., Epema, D.H.J., Franke, C., Papaspyrou, A., Schley, L., Song, B., Yahyapour, R.: On grid performance evaluation using synthetic workloads. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2006. LNCS, vol. 4376, pp. 232–255. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Feitelson, D.G., Rudolph, L.: Metrics and benchmarking for parallel job scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS 1998, and JSSPP 1998. LNCS, vol. 1459, pp. 1–24. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  20. 20.
    Raicu, I., Zhang, Z., Wilde, M., Foster, I., Beckman, P., Iskra, K., Clifford, B.: Toward loosely-coupled programming on petascale systems. In: ACM/IEEE SuperComputing (2008)Google Scholar
  21. 21.
    Iosup, A., Sonmez, O.O., Anoep, S., Epema, D.H.J.: The performance of bags-of-tasks in large-scale distributed systems. In: HPDC, pp. 97–108 (2008)Google Scholar
  22. 22.
    Conway, J.H.: All games bright and beautiful. The American Mathematical Monthly 84(6), 417–434 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Bouzy, B., Cazenave, T.: Computer go: An ai oriented survey. Artificial Intelligence 132, 39–103 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Demaine, E.D.: Playing games with algorithms: Algorithmic combinatorial game theory. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 18–32. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Yamamoto, H., Yoshigahara, N., Tanaka, G., Uematsu, M., Nelson, H.: Lunar Lockout: a space adventure puzzle, ThinkFun (1989)Google Scholar
  26. 26.
    Stratan, C., Iosup, A., Epema, D.H.J.: A performance study of grid workflow engines. In: GRID, pp. 25–32. IEEE, Los Alamitos (2008)Google Scholar
  27. 27.
    Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the condor experience. Conc.&Comp.: Pract.&Exp. 17, 323–356 (2005)CrossRefGoogle Scholar
  28. 28.
    Raicu, I., Zhao, Y., Dumitrescu, C., Foster, I.T., Wilde, M.: Falkon: a fast and light-weight task execution framework. In: ACM/IEEE SuperComputing (2007)Google Scholar
  29. 29.
    Singh, G., Kesselman, C., Deelman, E.: Optimizing grid-based workflow execution. J. Grid Comput. 3(3-4), 201–219 (2005)CrossRefGoogle Scholar
  30. 30.
    Ludäscher, B., et al.: Scientific workflow management and the Kepler system. Conc. & Comp.: Pract. & Exp. 18(10), 1039–1065 (2006)CrossRefGoogle Scholar
  31. 31.
    Oinn, T.M., et al.: Taverna: lessons in creating a workflow environment for the life sciences. Conc. & Comp.: Pract. & Exp. 18(10), 1067–1100 (2006)CrossRefGoogle Scholar
  32. 32.
    von Laszewski, G., Hategan, M.: Workflow concepts of the Java CoG Kit. J. Grid Comput. 3(3-4), 239–258 (2005)CrossRefGoogle Scholar
  33. 33.
    Truong, H.L., Dustdar, S., Fahringer, T.: Performance metrics and ontologies for grid workflows. Future Gen. Comp. Syst. 23(6), 760–772 (2007)CrossRefGoogle Scholar
  34. 34.
    Iosup, A., Epema, D.H.J.: GrenchMark: A framework for analyzing, testing, and comparing grids. In: CCGrid, pp. 313–320. IEEE, Los Alamitos (2006)Google Scholar
  35. 35.
    Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: “SETI@Home”. Commun. ACM 45(11), 56–61 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alexandru Iosup
    • 1
  1. 1.Electrical Eng., Mathematics and Computer Science DepartmentDelft University of TechnologyDelftThe Netherlands

Personalised recommendations