Immunological Synapses Within Context: Patterns of Cell–Cell Communication and Their Application in T–T Interactions

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 340)


The cell-biology of intercellular communication between T cells and their partners has been greatly advanced over the past 10 years. The key morphological and motility features of cell contact-based communication between T cells and APCs can now be seen as a collection of patterns for cell–cell interactions amongst immune cells more generally, each serving to contribute to the outcome of the contact both locally and globally. Here we review the conservation of these patterns, amongst which is the emergent “immunological synapse,” and describe a newly defined example, formed between the adjacent activating T cells. We subsequently seek to put these and the pattern more generally into the framework of system-wide behavior of the immune system. We postulate that the patterns are fine-tuned to provide quorum-like decisions by collections of activating and activated cells that interact over time and space.



JD was supported by the Korea Science and Engineering Foundation (KOSEF) NCRC grant funded by the Korea government (MEST) (No. R15-2004-033-06002-0) MFK was supported by funding from the Sandler family fund, the JDRF and the Leukemia and Lymphoma Society. We thank Peter Beemiller for the critical reading, and Miju Kim for assistance with graphics.


  1. Alexander C, Ishikawa S, Silverstein M (1977) A pattern language: towns, buildings, construction. Oxford University Press, New YorkGoogle Scholar
  2. Anderson RGW, Jacobson K (2002) Cell biology – a role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296(5574):1821–1825CrossRefPubMedGoogle Scholar
  3. Bajenoff M et al (2006) Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25(6):989–1001CrossRefPubMedGoogle Scholar
  4. Bar JJ, Khanna KM, Lefrancois L (2008) Endogenous naive CD8(+) T cell precursor frequency regulates primary and memory responses to infection. Immunity 28(6):859–869CrossRefGoogle Scholar
  5. Batista FD, Iber D, Neuberger MS (2001) B cells acquire antigen from target cells after synapse formation. Nature 411(6836):489–494CrossRefPubMedGoogle Scholar
  6. Bettelli E et al (2008) Induction and effector functions of T(H)17 cells. Nature 453(7198):1051–1057CrossRefPubMedGoogle Scholar
  7. Boisvert J, Edmondson S, Krummel MF (2004) Immunological synapse formation licenses CD40-CD40L accumulations at T-APC contact sites. J Immunol 173(6):3647–3652PubMedGoogle Scholar
  8. Bousso P, Robey E (2003) Dynamics of CD8(+) T cell priming by dendritic cells in intact lymph nodes. Nat Immunol 4(6):579–585CrossRefPubMedGoogle Scholar
  9. Brossard C et al (2005) Multifocal structure of the T cell – dendritic cell synapse. Eur J Immunol 35(6):1741–1753CrossRefPubMedGoogle Scholar
  10. Cahalan MD, Parker I (2008) Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Annu Rev Immunol 26:585–626CrossRefPubMedGoogle Scholar
  11. Campi G, Varma R, Dustin ML (2005) Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J Exp Med 202(8):1031–1036CrossRefPubMedGoogle Scholar
  12. Castellino F et al (2006) Chemokines enhance immunity by guiding naive CD8(+) T cells to sites of CD4 T cell-dendritic cell interaction. Nature 440(7086):890–895CrossRefPubMedGoogle Scholar
  13. Celli S, Lemaitre F, Bousso P (2007) Real-time manipulation of T cell-dendritic cell interactions in vivo reveals the importance of prolonged contacts for CD4(+) T cell activation. Immunity 27(4):625–634CrossRefPubMedGoogle Scholar
  14. Cemerski S et al (2008) The balance between T cell receptor signaling and degradation at the center of the immunological synapse is determined by antigen quality. Immunity 29(3):414–422CrossRefPubMedGoogle Scholar
  15. Chirifu M et al (2007) Crystal structure of the IL-15-IL-15R alpha complex, a cytokine-receptor unit presented in trans. Nat Immunol 8(9):1001–1007CrossRefPubMedGoogle Scholar
  16. Choudhuri K et al (2005) T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 436(7050):578–582CrossRefPubMedGoogle Scholar
  17. Constant SL, Bottomly K (1997) Induction of TH1 and TH2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol 15:297–322CrossRefPubMedGoogle Scholar
  18. Dardalhon V et al (2008) IL-4 inhibits TGF-beta-induced Foxp3(+) T cells and, together with TGF-beta, generates IL-9(+) IL-10(+) Foxp3(-) effector T cells. Nat Immunol 9(12):1347–1355CrossRefPubMedGoogle Scholar
  19. Delon J, Kaibuchi K, Germain RN (2001) Exclusion of CD43 from the immunological synapse is mediated by phosphorylation-regulated relocation of the cytoskeletal adaptor moesin. Immunity 15(5):691–701CrossRefPubMedGoogle Scholar
  20. DeMond AL et al (2006) Control of antigen presentation with a photoreleasable agonist peptide. J Am Chem Soc 128(48):15354–15355CrossRefPubMedGoogle Scholar
  21. Depoil D et al (2005) Immunological synapses are versatile structures enabling selective T cell polarization. Immunity 22(2):185–194CrossRefPubMedGoogle Scholar
  22. Douglass AD, Vale RD (2005) Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121(6):937–950CrossRefPubMedGoogle Scholar
  23. Dubois S et al (2002) IL-15R alpha recycles and presents IL-15 in trans to neighboring cells. Immunity 17(5):537–547CrossRefPubMedGoogle Scholar
  24. Dustin ML, Colman DR (2002) Neural and immunological synaptic relations. Science 298(5594):785–789CrossRefPubMedGoogle Scholar
  25. Dustin ML et al (1997) Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc Natl Acad Sci USA 94(8):3909–3913CrossRefPubMedGoogle Scholar
  26. Dustin ML et al (1998) A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell 94(5):667–677CrossRefPubMedGoogle Scholar
  27. Dustin ML et al (2006) T cell-dendritic cell immunological synapses. Curr Opin Immunol 18(4):512–516CrossRefPubMedGoogle Scholar
  28. Eicher DM, Waldmann TA (1998) IL-2R alpha on one cell can present IL-2 to IL-2R beta/gamma(c) on another cell to augment IL-2 signaling. J Immunol 161(10):5430–5437PubMedGoogle Scholar
  29. Faroudi M et al (2003) Cutting edge: T lymphocyte activation by repeated immunological synapse formation and intermittent signaling. J Immunol 171(3):1128–1132PubMedGoogle Scholar
  30. Gaffen SL (2001) Signaling domains of the interleukin 2 receptor. Cytokine 14(2):63–77CrossRefPubMedGoogle Scholar
  31. Gaffen SL, Liu KD (2004) Overview of interleukin-2 function, production and clinical applications. Cytokine 28(3):109–123CrossRefPubMedGoogle Scholar
  32. Garcia Z et al (2007) Competition for antigen determines the stability of T cell-dendritic cell interactions during clonal expansion. Proc Natl Acad Sci USA 104(11):4553–4558CrossRefPubMedGoogle Scholar
  33. Germain RN et al (2006) Dynamic imaging of the immune system: progress, pitfalls and promise. Nat Rev Immunol 6(7):497–507CrossRefPubMedGoogle Scholar
  34. Grakoui A et al (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285(5425):221–227CrossRefPubMedGoogle Scholar
  35. Gunzer M et al (2000) Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity 13(3):323–332CrossRefPubMedGoogle Scholar
  36. Hataye J et al (2006) Naive and memory CD4(+) T cell survival controlled by clonal abundance. Science 312(5770):114–116CrossRefPubMedGoogle Scholar
  37. Hemar A et al (1995) Endocytosis of interleukin-2 receptors in human T-lymphocytes – distinct intracellular-localization and fate of the receptor alpha-chain, beta-chain, and gamma-chain. J Cell Biol 129(1):55–64CrossRefPubMedGoogle Scholar
  38. Henrickson SE et al (2008) T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nat Immunol 9(3):282–291CrossRefPubMedGoogle Scholar
  39. Hommel M, Kyewski B (2003) Dynamic changes during the immune response in T cell-antigen-presenting cell clusters isolated from lymph nodes. J Exp Med 197(3):269–280CrossRefPubMedGoogle Scholar
  40. Hugues S et al (2007) Dynamic imaging of chemokine-dependent CD8(+) T cell help for CD8(+) T cell responses. Nat Immunol 8(9):921–930CrossRefPubMedGoogle Scholar
  41. Hurez V et al (2003) Restricted clonal expression of IL-2 by naive T cells reflects differential dynamic interactions with dendritic cells. J Exp Med 198(1):123–132CrossRefPubMedGoogle Scholar
  42. Huse M et al (2006) T cells use two directionally distinct pathways for cytokine secretion. Nat Immunol 7(3):247–255CrossRefPubMedGoogle Scholar
  43. Huse M et al (2007) Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist. Immunity 27(1):76–88CrossRefPubMedGoogle Scholar
  44. Ingulli E et al (1997) In vivo detection of dendritic cell antigen presentation to CD4(+) T cells. J Exp Med 185(12):2133–2141CrossRefPubMedGoogle Scholar
  45. Kim HP, Imbert J, Leonard WJ (2006) Both integrated and differential regulation of components of the IL-2/IL-2 receptor system. Cytokine Growth Factor Rev 17(5):349–366CrossRefPubMedGoogle Scholar
  46. Krummel MF et al (2000) Differential clustering of CD4 and CD3 zeta during T cell recognition. Science 289(5483):1349–1352CrossRefPubMedGoogle Scholar
  47. Kupfer A, Mosmann TR, Kupfer H (1991) Polarized expression of cytokines in cell conjugates of helper T cells and splenic B cells. Proc Natl Acad Sci USA 88(3):775–779CrossRefPubMedGoogle Scholar
  48. Kupfer H, Monks CR, Kupfer A (1994) Small splenic B cells that bind to antigen-specific T helper (Th) cells and face the site of cytokine production in the Th cells selectively proliferate: immunofluorescence microscopic studies of Th-B antigen-presenting cell interactions. J Exp Med 179(5):1507–1515CrossRefPubMedGoogle Scholar
  49. Laurence A et al (2007) Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26(3):371–381CrossRefPubMedGoogle Scholar
  50. Lee KH et al (2002) T cell receptor signaling precedes immunological synapse formation. Science 295(5559):1539–1542CrossRefPubMedGoogle Scholar
  51. Lenardo MJ (1991) Interleukin-2 programs mouse alpha-beta-lymphocytes-T for apoptosis. Nature 353(6347):858–861CrossRefPubMedGoogle Scholar
  52. Liao W et al (2008) Priming for T helper type 2 differentiation by interleukin 2-mediated induction of interleukin 4 receptor alpha-chain expression. Nat Immunol 9(11):1288–1296CrossRefPubMedGoogle Scholar
  53. Lillemeier BF et al (2006) Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci USA 103(50):18992–18997CrossRefPubMedGoogle Scholar
  54. Lin JX, Leonard WJ (2000) The role of Stat5a and Stat5b in signaling by IL-2 family cytokines. Oncogene 19(21):2566–2576CrossRefPubMedGoogle Scholar
  55. Lindquist RL et al (2004) Visualizing dendritic cell networks in vivo. Nat Immunol 5(12):1243–1250CrossRefPubMedGoogle Scholar
  56. Long MX, Adler AJ (2006) Cutting edge: paracrine, but not autocrine, IL-2 signaling is sustained during early antliviiral. CD4 T cell response. J Immunol 177(7):4257–4261PubMedGoogle Scholar
  57. Maldonado RA et al (2004) A role for the immunological synapse in lineage commitment of CD4 lymphocytes. Nature 431(7008):527–532CrossRefPubMedGoogle Scholar
  58. McCann FE et al (2003) The size of the synaptic cleft and distinct distributions of filamentous actin, ezrin, CD43, and CD45 at activating and inhibitory human NK cell immune synapses. J Immunol 170(6):2862–2870PubMedGoogle Scholar
  59. Mempel TR, Henrickson SE, von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427(6970):154–159CrossRefPubMedGoogle Scholar
  60. Miller MJ et al (2004) Imaging the single cell dynamics of CD4(+) T cell activation by dendritic cells in lymph nodes. J Exp Med 200(7):847–856CrossRefPubMedGoogle Scholar
  61. Monks CRF et al (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395(6697):82–86CrossRefPubMedGoogle Scholar
  62. Mossman KD et al (2005) Altered TCR signaling from geometrically repatterned immunological synapses. Science 310(5751):1191–1193CrossRefPubMedGoogle Scholar
  63. Norcross MA (1984) A synaptic basis for T-lymphocyte activation. Ann Immunol (Paris) 135D:113–134Google Scholar
  64. Oddos S et al (2008) High-speed high-resolution imaging of intercellular immune synapses using optical tweezers. Biophys J 95:L66–L68CrossRefPubMedGoogle Scholar
  65. Pandiyan P et al (2007) CD4(+) CD25(+) Foxp3(+) regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4(+) T cells. Nat Immunol 8(12):1353–1362CrossRefPubMedGoogle Scholar
  66. Purbhoo MA et al (2004) T cell killing does not require the formation of a stable mature immunological synapse. Nat Immunol 5(5):524–530CrossRefPubMedGoogle Scholar
  67. Reichert P et al (2001) Cutting edge: in vivo identification of TCR redistribution and polarized IL-2 production by naive CD4 T cells. J Immunol 166(7):4278–4281PubMedGoogle Scholar
  68. Rittirsch D, Flierl MA, Ward PA (2008) Harmful molecular mechanisms in sepsis. Nat Rev Immunol 8(10):776–787CrossRefPubMedGoogle Scholar
  69. Robb RJ et al (1987) Interleukin 2 binding molecule distinct from the Tac protein: analysis of its role in formation of high-affinity receptors. Proc Natl Acad Sci USA 84:2002–2006CrossRefPubMedGoogle Scholar
  70. Rothlein R, Springer TA (1986) The requirement for lymphocyte function-associated antigen 1 in homotypic leukocyte adhesion stimulated by phorbol ester. J Immunol 163(5):1132–1149Google Scholar
  71. Rothlein R et al (1986) A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol 137(4):1270–1274PubMedGoogle Scholar
  72. Sabatos CA et al (2008) A synaptic basis for paracrine interleukin-2 signaling during homotypic T cell interaction. Immunity 29(2):238–248CrossRefPubMedGoogle Scholar
  73. Saparov A et al (1999) Interleukin-2 expression by a subpopulation of primary T cells is linked to enhanced memory/effector function. Immunity 11(3):271–280CrossRefPubMedGoogle Scholar
  74. Scholer A et al (2008) Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8(+) T cell memory. Immunity 28(2):258–270CrossRefPubMedGoogle Scholar
  75. Shaw AS, Dustin ML (1997) Making the T cell receptor go the distance: a topological view of T cell activation. Immunity 6(4):361–369CrossRefPubMedGoogle Scholar
  76. Sims TN et al (2007) Opposing effects of PKC theta and WASp on symmetry breaking and relocation of the immunological synapse. Cell 129(4):773–785CrossRefPubMedGoogle Scholar
  77. Skokos D et al (2007) Peptide-MHC potency governs dynamic interactions between T cells and dendritic cells in lymph nodes. Nat Immunol 8(8):835–844CrossRefPubMedGoogle Scholar
  78. Stauber DJ et al (2006) Crystal structure of the IL-2 signaling complex: paradigm for a heterotrimeric cytokine receptor. Proc Natl Acad Sci USA 103(8):2788–2793CrossRefPubMedGoogle Scholar
  79. Stinchcombe JC et al (2001) The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15(5):751–761CrossRefPubMedGoogle Scholar
  80. Sytwu HK, Liblau RS, McDevitt HO (1996) The roles of Fas/APO-1 (CD95) and TNF in antigen-induced programmed cell death in T cell receptor transgenic mice. Immunity 5(1):17–30CrossRefPubMedGoogle Scholar
  81. Tang QZ et al (2006) Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 7(1):83–92CrossRefPubMedGoogle Scholar
  82. Tohma S, Ramberg JE, Lipsky PE (1992) Expression and distribution of CD11a/CD18 and CD54 during human T cell-B cell interactions. J Leukoc Biol 52:97–103PubMedGoogle Scholar
  83. van der Merwe PA, Davis SJ (2003) Molecular interactions mediating T cell antigen recognition. Annu Rev Immunol 21:659–684CrossRefPubMedGoogle Scholar
  84. van Kooyk Y et al (1989) Enhancement of LFA-1-mediated cell adhesion by triggering through CD2 or CD3 on T lymphocytes. Nature 342(6251):811–813CrossRefPubMedGoogle Scholar
  85. Varma R et al (2006) T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25(1):117–127CrossRefPubMedGoogle Scholar
  86. Veldhoen M et al (2008) Transforming growth factor-beta “reprograms” the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9(12):1341–1346CrossRefPubMedGoogle Scholar
  87. Villarino AV et al (2007) Helper T cell IL-2 production is limited by negative feedback and STAT-dependent cytokine signals. J Exp Med 204(1):65–71CrossRefPubMedGoogle Scholar
  88. Waldmann TA (2006) The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 6(8):595–601CrossRefPubMedGoogle Scholar
  89. Wang XQ, Rickert M, Garcia KC (2005) Structure of the quaternary complex of interleukin-2 with its alpha, beta, and gamma(c) receptors. Science 310(5751):1159–1163CrossRefPubMedGoogle Scholar
  90. Whyte WH (1988) City: rediscovering the center. Doubleday, New YorkGoogle Scholar
  91. Wiedemann A et al (2006) Cytotoxic T lymphocytes kill multiple targets simultaneously via spatiotemporal uncoupling of lytic and stimulatory synapses. Proc Natl Acad Sci USA 103(29):10985–10990CrossRefPubMedGoogle Scholar
  92. Williams MA, Tyznik AJ, Bevan MJ (2006) Interleukin-2 signals during priming are required for secondary expansion of CD8(+) memory T cells. Nature 441(7095):890–893CrossRefPubMedGoogle Scholar
  93. Wulfing C, Davis MM (1998) A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282(5397):2266–2269CrossRefPubMedGoogle Scholar
  94. Yokosuka T et al (2005) Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol 6(12):1253–1262CrossRefPubMedGoogle Scholar
  95. Yokosuka T et al (2008) Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Immunity 29(4):589–601CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Pathology and Biological Imaging Development CenterUniversity of California San FranciscoSan FranciscoUSA
  2. 2.School of Interdisciplinary Bioscience and Bioengineering and Department of Mechanical EngineeringPohang University of Science and TechnologyPohangKorea

Personalised recommendations