Insights into Function of the Immunological Synapse from Studies with Supported Planar Bilayers

  • Michael L. Dustin
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 340)


Innate and adaptive immunity is dependent upon reliable cell–cell communication mediated by direct interactions of cell surface receptors with ligands integrated into the surface of apposing cells or bound directly to the surface as in complement deposition or antibody mediated recognition through Fc receptors. Supported lipid bilayers formed on glass surfaces offer a useful model system in which to explore some basic features of molecular interactions in immunological relevant contacts, which include signal integration and effector functions through immunological synapses and kinapses. We have exploited that lateral mobility of molecules in the supported planar bilayers and fluorescence microscopy to develop a system for measurement of two-dimensional affinities and kinetic rates in the contact area, which is of immunological interest. Affinity measurements are based on a modified Scatchard analysis. Measurements of kinetic rates are based on fluorescence photo bleaching after recovery at the level of the entire contact area. This has been coupled to a reaction–diffusion equation that allows calculation of on- and off-rates. We have found that mixtures of ligands in supported planar bilayers can effectively activate T lymphocytes and simultaneously allow monitoring of the immunological synapse. Recent studies in planar bilayers have provided additional insights into organization principles of cell–cell interfaces. Perennial problems in understanding cell–cell communication are yielding quantitative measurements based on planar bilayers in areas of ligand-driven receptor clustering and the role of the actin cytoskeleton in immune cell activation. A major goal for the field is determining quantitative rules involved in signaling complex formation by innate and adaptive receptor systems.


Affinity Antibodies Avidity Bilayer Cytoskeleton Kinapse Receptors Signaling Synapse 



B-cell antigen receptor


Lymphocyte function associated


Protein kinase C


Supramolecular activation cluster


T-cell antigen receptor


Total internal reflection fluorescence



I thank the members of my lab who have contributed to many of the studies highlighted in this commentary. I thank Mike Sheetz for discussion of implications of bead size threshold for TCR stimulation.


  1. Al-Alwan MM, Rowden G, Lee TD, West KA (2001a) Fascin is involved in the antigen presentation activity of mature dendritic cells. J Immunol 166:338–345PubMedGoogle Scholar
  2. Al-Alwan MM, Rowden G, Lee TD, West KA (2001b) The dendritic cell cytoskeleton is critical for the formation of the immunological synapse. J Immunol 166:1452–1456PubMedGoogle Scholar
  3. Babbitt BP, Allen PM, Matsueda G, Haber E, Unanue ER (1985) Binding of immunogenic peptides to Ia histocompatibility molecules. Nature 317:359–361PubMedCrossRefGoogle Scholar
  4. Batista FD, Iber D, Neuberger MS (2001) B cells acquire antigen from target cells after synapse formation. Nature 411:489–494PubMedCrossRefGoogle Scholar
  5. Beal AM, Anikeeva N, Varma R, Cameron TO, Norris PJ, Dustin ML, Sykulev Y (2008) Protein kinase C{theta} regulates stability of the peripheral adhesion ring junction and contributes to the sensitivity of target cell lysis by CTL. J Immunol 181:4815–4824PubMedGoogle Scholar
  6. Bonte F, Juliano RL (1986) Interactions of liposomes with serum proteins. Chem Phys Lipids 40:359–372PubMedCrossRefGoogle Scholar
  7. Breart B, Lemaitre F, Celli S, Bousso P (2008) Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice. J Clin Invest 118:1390–1397PubMedCrossRefGoogle Scholar
  8. Brian AA, McConnell HM (1984) Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc Natl Acad Sci USA 81:6159–6163PubMedCrossRefGoogle Scholar
  9. Bromley SK, Iaboni A, Davis SJ, Whitty A, Green JM, Shaw AS, Weiss A, Dustin ML (2001) The immunological synapse and CD28-CD80 interactions. Nat Immunol 2:1159–1166PubMedCrossRefGoogle Scholar
  10. Brossard C, Feuillet V, Schmitt A, Randriamampita C, Romao M, Raposo G, Trautmann A (2005) Multifocal structure of the T cell – dendritic cell synapse. Eur J Immunol 35:1741–1753PubMedCrossRefGoogle Scholar
  11. Bunnell SC, Hong DI, Kardon JR, Yamazaki T, McGlade CJ, Barr VA, Samelson LE (2002) T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J Cell Biol 158:1263–1275PubMedCrossRefGoogle Scholar
  12. Campi G, Varma R, Dustin ML (2005) Actin and agonist MHC–peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J Exp Med 202:1031–1036PubMedCrossRefGoogle Scholar
  13. Carman CV, Sage PT, Sciuto TE, de la Fuente MA, Geha RS, Ochs HD, Dvorak HF, Dvorak AM, Springer TA (2007) Transcellular diapedesis is initiated by invasive podosomes. Immunity 26:784–797PubMedCrossRefGoogle Scholar
  14. Carrasco YR, Fleire SJ, Cameron T, Dustin ML, Batista FD (2004) LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity 20:589–599PubMedCrossRefGoogle Scholar
  15. Chan PY, Lawrence MB, Dustin ML, Ferguson LM, Golan DE, Springer TA (1991) Influence of receptor lateral mobility on adhesion strengthening between membranes containing LFA-3 and CD2. J Cell Biol 115:245–255PubMedCrossRefGoogle Scholar
  16. Chang JT, Palanivel VR, Kinjyo I, Schambach F, Intlekofer AM, Banerjee A, Longworth SA, Vinup KE, Mrass P, Oliaro J, Killeen N, Orange JS, Russell SM, Weninger W, Reiner SL (2007) Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315:1687–1691PubMedCrossRefGoogle Scholar
  17. Choi CK, Vicente-Manzanares M, Zareno J, Whitmore LA, Mogilner A, Horwitz AR (2008) Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat Cell Biol 10:1039–1050PubMedCrossRefGoogle Scholar
  18. Choudhuri K, Wiseman D, Brown MH, Gould K, van der Merwe PA (2005) T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 436:578–582PubMedCrossRefGoogle Scholar
  19. DeMond AL, Mossman KD, Starr T, Dustin ML, Groves JT (2008) T cell receptor microcluster transport through molecular mazes reveals mechanism of translocation. Biophys J 94:3286–3292PubMedCrossRefGoogle Scholar
  20. Depoil D, Fleire S, Treanor BL, Weber M, Harwood NE, Marchbank KL, Tybulewicz VL, Batista FD (2008) CD19 is essential for B cell activation by promoting B cell receptor-antigen microcluster formation in response to membrane-bound ligand. Nat Immunol 9:63–72PubMedCrossRefGoogle Scholar
  21. Dustin ML (1997) Adhesive bond dynamics in contacts between T lymphocytes and glass supported planar bilayers reconstituted with the immunoglobulin related adhesion molecule CD58. J Biol Chem 272:15782–15788PubMedCrossRefGoogle Scholar
  22. Dustin ML (2008) Hunter to gatherer and back: immunological synapses and kinapses as variations on the theme of amoeboid locomotion. Annu Rev Cell Dev Biol 24:577–596PubMedCrossRefGoogle Scholar
  23. Dustin ML, Chan AC (2000) Signaling takes shape in the immune system. Cell 103:283–294PubMedCrossRefGoogle Scholar
  24. Dustin ML, Colman DR (2002) Neural and immunological synaptic relations. Science 298:785–789PubMedCrossRefGoogle Scholar
  25. Dustin ML, Cooper JA (2000) The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat Immunol 1:23–29PubMedCrossRefGoogle Scholar
  26. Dustin ML, Shaw AS (1999) Costimulation: building an immunological synapse. Science 283:649–650PubMedCrossRefGoogle Scholar
  27. Dustin ML, Springer TA (1988) Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J Cell Biol 107:321–331PubMedCrossRefGoogle Scholar
  28. Dustin ML, Springer TA (1989) T cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341:619–624PubMedCrossRefGoogle Scholar
  29. Dustin ML, Sanders ME, Shaw S, Springer TA (1987a) Purified lymphocyte function-associated antigen 3 binds to CD2 and mediates T lymphocyte adhesion. J Exp Med 165:677–692PubMedCrossRefGoogle Scholar
  30. Dustin ML, Selvaraj P, Mattaliano RJ, Springer TA (1987b) Anchoring mechanisms for LFA-3 cell adhesion glycoprotein at membrane surface. Nature 329:846–848PubMedCrossRefGoogle Scholar
  31. Dustin ML, Singer KH, Tuck DT, Springer TA (1988) Adhesion of T lymphoblasts to epidermal keratinocytes is regulated by interferon gamma and is mediated by intercellular adhesion molecule 1 (ICAM-1). J Exp Med 167:1323–1340PubMedCrossRefGoogle Scholar
  32. Dustin ML, Ferguson LM, Chan PY, Springer TA, Golan DE (1996a) Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area. J Cell Biol 132:465–474PubMedCrossRefGoogle Scholar
  33. Dustin ML, Miller JM, Ranganath S, Vignali DA, Viner NJ, Nelson CA, Unanue ER (1996b) TCR-mediated adhesion of T cell hybridomas to planar bilayers containing purified MHC class II/peptide complexes and receptor shedding during detachment. J Immunol 157:2014–2021PubMedGoogle Scholar
  34. Dustin ML, Bromley SK, Kan Z, Peterson DA, Unanue ER (1997a) Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc Natl Acad Sci USA 94:3909–3913PubMedCrossRefGoogle Scholar
  35. Dustin ML, Golan DE, Zhu DM, Miller JM, Meier W, Davies EA, van der Merwe PA (1997b) Low affinity interaction of human or rat T cell adhesion molecule CD2 with its ligand aligns adhering membranes to achieve high physiological affinity. J Biol Chem 272:30889–30898PubMedCrossRefGoogle Scholar
  36. Dustin ML, Olszowy MW, Holdorf AD, Li J, Bromley S, Desai N, Widder P, Rosenberger F, van der Merwe PA, Allen PM, Shaw AS (1998) A novel adapter protein orchestrates receptor patterning and cytoskeletal polarity in T cell contacts. Cell 94:667–677PubMedCrossRefGoogle Scholar
  37. Dustin ML, Starr T, Coombs D, Majeau GR, Meier W, Hochman PS, Douglass A, Vale R, Goldstein B, Whitty A (2007a) Quantification and modeling of Tripartite CD2-, CD58FC chimera (Alefacept)-, and CD16-mediated cell adhesion. J Biol Chem 282:34748–34757PubMedCrossRefGoogle Scholar
  38. Dustin ML, Starr T, Varma R, Thomas VK (2007) Supported planar bilayers for study of the immunological synapse. Curr Protoc Immunol, Chapter 18, Unit 18.13Google Scholar
  39. Fischer KD, Kong YY, Nishina H, Tedford K, Marengere LE, Kozieradzki I, Sasaki T, Starr M, Chan G, Gardener S, Nghiem MP, Bouchard D, Barbacid M, Bernstein A, Penninger JM (1998) Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Curr Biol 8:554–562PubMedCrossRefGoogle Scholar
  40. Fleire SJ, Goldman JP, Carrasco YR, Weber M, Bray D, Batista FD (2006) B cell ligand discrimination through a spreading and contraction response. Science 312:738–741PubMedCrossRefGoogle Scholar
  41. Freiberg BA, Kupfer H, Maslanik W, Delli J, Kappler J, Zaller DM, Kupfer A (2002) Staging and resetting T cell activation in SMACs. Nat Immunol 3:911–917PubMedCrossRefGoogle Scholar
  42. Galbraith CG, Yamada KM, Sheetz MP (2002) The relationship between force and focal complex development. J Cell Biol 159:695–705PubMedCrossRefGoogle Scholar
  43. Gay D, Coeshott C, Golde W, Kappler J, Marrack P (1986) The major histocompatibility complex-restricted antigen receptor on T cells. IX. Role of accessory molecules in recognition of antigen plus isolated IA. J Immunol 136:2026–2032PubMedGoogle Scholar
  44. Gil D, Schamel WW, Montoya M, Sanchez-Madrid F, Alarcon B (2002) Recruitment of Nck by CD3 epsilon reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109:901–912PubMedCrossRefGoogle Scholar
  45. Gomez TS, Kumar K, Medeiros RB, Shimizu Y, Leibson PJ, Billadeau DD (2007) Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse. Immunity 26:177–190PubMedCrossRefGoogle Scholar
  46. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227PubMedCrossRefGoogle Scholar
  47. Gunzer M, Schafer A, Borgmann S, Grabbe S, Zanker KS, Brocker EB, Kampgen E, Friedl P (2000) Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity 13:323–332PubMedCrossRefGoogle Scholar
  48. Hafeman DG, von Tscharner V, McConnell HM (1981) Specific antibody-dependent interactions between macrophages and lipid haptens in planar lipid monolayers. Proc Natl Acad Sci USA 78:4552–4556PubMedCrossRefGoogle Scholar
  49. Hollander N, Selvaraj P, Springer TA (1988) Biosynthesis and function of LFA-3 in human mutant cells deficient in phosphatidylinositol anchored proteins. J Immunol 141:4283–4290PubMedGoogle Scholar
  50. Ilani T, Vasiliver-Shamis G, Vardhana S, Bretscher A, Dustin ML (2009) T cell antigen receptor signaling and immunological synapse stability require myosin IIA. Nat Immunol 10:531–539PubMedCrossRefGoogle Scholar
  51. Izzard CS, Lochner LR (1976) Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J Cell Sci 21:129–159PubMedGoogle Scholar
  52. Jacobelli J, Chmura SA, Buxton DB, Davis MM, Krummel MF (2004) A single class II myosin modulates T cell motility and stopping, but not synapse formation. Nat Immunol 5:531–538PubMedCrossRefGoogle Scholar
  53. Kaizuka Y, Douglass AD, Varma R, Dustin ML, Vale RD (2007) Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. Proc Natl Acad Sci USA 104:20296–20301PubMedCrossRefGoogle Scholar
  54. Kaizuka Y, Douglass AD, Vardhana S, Dustin ML, Vale RD (2009) The coreceptor CD2 uses plasma membrane microdomains to transduce signals in T cells. J Cell Biol 185:521–534PubMedCrossRefGoogle Scholar
  55. Kloboucek A, Behrisch A, Faix J, Sackmann E (1999) Adhesion-induced receptor segregation and adhesion plaque formation: a model membrane study. Biophys J 77:2311–2328PubMedCrossRefGoogle Scholar
  56. Krummel MF, Sjaastad MD, Wulfing C, Davis MM (2000) Differential clustering of CD4 and CD3ζ during T cell recognition. Science 289:1349–1352PubMedCrossRefGoogle Scholar
  57. Lee KH, Holdorf AD, Dustin ML, Chan AC, Allen PM, Shaw AS (2002) T cell receptor signaling precedes immunological synapse formation. Science 295:1539–1542PubMedCrossRefGoogle Scholar
  58. Lee KH, Dinner AR, Tu C, Campi G, Raychaudhuri S, Varma R, Sims TN, Burack WR, Wu H, Wang J, Kanagawa O, Markiewicz M, Allen PM, Dustin ML, Chakraborty AK, Shaw AS (2003) The immunological synapse balances T cell receptor signaling and degradation. Science 302:1218–1222PubMedCrossRefGoogle Scholar
  59. Liu D, Bryceson YT, Meckel T, Vasiliver-Shamis G, Dustin ML, Long EO (2009) Integrin-dependent organization and bidirectional vesicular traffic at cytotoxic immune synapses. Immunity (in press)Google Scholar
  60. Lomnitzer R, Rabson AR (1981) Mechanism of suppression of lymphocyte proliferation by Concanavalin A-activated mononuclear cells. Immunology 43:475–481PubMedGoogle Scholar
  61. Lucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A (2007) Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26:503–517PubMedCrossRefGoogle Scholar
  62. Luo BH, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25:619–647PubMedCrossRefGoogle Scholar
  63. Marlin SD, Springer TA (1987) Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 51:813–819PubMedCrossRefGoogle Scholar
  64. McKeithan TW (1995) Kinetic proofreading in T-cell receptor signal transduction. Proc Natl Acad Sci USA 92:5042–5046PubMedCrossRefGoogle Scholar
  65. Mempel TR, Henrickson SE, Von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427:154–159PubMedCrossRefGoogle Scholar
  66. Mescher MF (1992) Surface contact requirements for activation of cytotoxic T lymphocytes. J Immunol 149:2402–2405PubMedGoogle Scholar
  67. Metzger H (1992) Transmembrane signaling: the joy of aggregation. J Immunol 149:1477–1487PubMedGoogle Scholar
  68. Milstein O, Tseng SY, Starr T, Llodra J, Nans A, Liu M, Wild MK, van der Merwe PA, Stokes DL, Reisner Y, Dustin ML (2008) Nanoscale increases in CD2-CD48-mediated intermembrane spacing decrease adhesion and reorganize the immunological synapse. J Biol Chem 283:34414–34422PubMedCrossRefGoogle Scholar
  69. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395:82–86PubMedCrossRefGoogle Scholar
  70. Mossman KD, Campi G, Groves JT, Dustin ML (2005) Altered TCR signaling from geometrically repatterned immunological synapses. Science 310:1191–1193PubMedCrossRefGoogle Scholar
  71. Negulescu PA, Krasieva TB, Khan A, Kerschbaum HH, Cahalan MD (1996) Polarity of T cell shape, motility, and sensitivity to antigen. Immunity 4:421–430PubMedCrossRefGoogle Scholar
  72. Nguyen K, Sylvain NR, Bunnell SC (2008) T cell costimulation via the integrin VLA-4 inhibits the actin-dependent centralization of signaling microclusters containing the adaptor SLP-76. Immunity 28:810–821PubMedCrossRefGoogle Scholar
  73. Nolz JC, Gomez TS, Zhu P, Li S, Medeiros RB, Shimizu Y, Burkhardt JK, Freedman BD, Billadeau DD (2006) The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation. Curr Biol 16:24–34PubMedCrossRefGoogle Scholar
  74. Norcross MA (1984) A synaptic basis for T-lymphocyte activation. Ann Immunol (Paris) 135D:113–134Google Scholar
  75. Oddos S, Dunsby C, Purbhoo MA, Chauveau A, Owen DM, Neil MA, Davis DM, French PM (2008) High-speed high-resolution imaging of intercellular immune synapses using optical tweezers. Biophys J 95:L66–L68PubMedCrossRefGoogle Scholar
  76. Parthasarathy R, Groves JT (2006) Coupled membrane fluctuations and protein mobility in supported intermembrane junctions. J Phys Chem B 110:8513–8516PubMedCrossRefGoogle Scholar
  77. Pierres A, Benoliel AM, Bongrand P, van der Merwe PA (1996) Determination of the lifetime and force dependence of interactions of single bonds between surface-attached CD2 and CD48 adhesion molecules. Proc Natl Acad Sci USA 93:15114–15118PubMedCrossRefGoogle Scholar
  78. Reich Z, Boniface JJ, Lyons DS, Borochov N, Wachtel EJ, Davis MM (1997) Ligand-specific oligomerization of T-cell receptor molecules. Nature 387:617–620PubMedCrossRefGoogle Scholar
  79. Rothlein R, Dustin ML, Marlin SD, Springer TA (1986) A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol 137:1270–1274PubMedGoogle Scholar
  80. Samelson LE, Patel MD, Weissman AM, Harford JB, Klausner RD (1986) Antigen activation of murine T cells induces tyrosine phosphorylation of a polypeptide associated with the T cell antigen receptor. Cell 46:1083–1090PubMedCrossRefGoogle Scholar
  81. Sanchez-Madrid F, Krensky AM, Ware CF, Robbins E, Strominger JL, Burakoff SJ, Springer TA (1982) Three distinct antigens associated with human T-lymphocyte-mediated cytolysis: LFA-1, LFA-2, and LFA-3. Proc Natl Acad Sci USA 79:7489–7493PubMedCrossRefGoogle Scholar
  82. Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51:660–672CrossRefGoogle Scholar
  83. Schlessinger J, Webb WW, Elson EL, Metzger H (1976) Lateral motion and valence of Fc receptors on rat peritoneal mast cells. Nature 264:550–552PubMedCrossRefGoogle Scholar
  84. Scholer A, Hugues S, Boissonnas A, Fetler L, Amigorena S (2008) Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory. Immunity 28:258–270PubMedCrossRefGoogle Scholar
  85. Shao JY, Yu Y, Dustin ML (2005) A model for CD2/CD58-mediated adhesion strengthening. Ann Biomed Eng 33:483–493PubMedCrossRefGoogle Scholar
  86. Shaw AS, Dustin ML (1997) Making the T cell receptor go the distance: a topological view of T cell activation. Immunity 6:361–369PubMedCrossRefGoogle Scholar
  87. Shaw S, Luce GE, Quinones R, Gress RE, Springer TA, Sanders ME (1986) Two antigen-independent adhesion pathways used by human cytotoxic T-cell clones. Nature 323:262–264PubMedCrossRefGoogle Scholar
  88. Shimaoka M, Xiao T, Liu JH, Yang Y, Dong Y, Jun CD, McCormack A, Zhang R, Joachimiak A, Takagi J, Wang JH, Springer TA (2003) Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112:99–111PubMedCrossRefGoogle Scholar
  89. Sims TN, Soos TJ, Xenias HS, Dubin-Thaler B, Hofman JM, Waite JC, Cameron TO, Thomas VK, Varma R, Wiggins CH, Sheetz MP, Littman DR, Dustin ML (2007) Opposing effects of PKCtheta and WASp on symmetry breaking and relocation of the immunological synapse. Cell 129:773–785PubMedCrossRefGoogle Scholar
  90. Skokos D, Shakhar G, Varma R, Waite JC, Cameron TO, Lindquist RL, Schwickert T, Nussenzweig MC, Dustin ML (2007) Peptide-MHC potency governs dynamic interactions between T cells and dendritic cells in lymph nodes. Nat Immunol 8:835–844PubMedCrossRefGoogle Scholar
  91. Smith A, Carrasco YR, Stanley P, Kieffer N, Batista FD, Hogg N (2005) A talin-dependent LFA-1 focal zone is formed by rapidly migrating T lymphocytes. J Cell Biol 170:141–151PubMedCrossRefGoogle Scholar
  92. Springer TA (1990) Adhesion receptors of the immune system. Nature 346:425–434PubMedCrossRefGoogle Scholar
  93. Stauffer TP, Meyer T (1997) Compartmentalized IgE receptor-mediated signal transduction in living cells. J Cell Biol 139:1447–1454PubMedCrossRefGoogle Scholar
  94. Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM (2006) Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443:462–465PubMedCrossRefGoogle Scholar
  95. Tolar P, Sohn HW, Pierce SK (2005) The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat Immunol 6:1168–1176PubMedCrossRefGoogle Scholar
  96. Tolar P, Hanna J, Krueger PD, Pierce SK (2009) The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens. Immunity 30:44–55PubMedCrossRefGoogle Scholar
  97. Tolentino TP, Wu J, Zarnitsyna VI, Fang Y, Dustin ML, Zhu C (2008) Measuring diffusion and binding kinetics by contact area FRAP. Biophys J 95:920–930PubMedCrossRefGoogle Scholar
  98. Torigoe C, Song J, Barisas BG, Metzger H (2004) The influence of actin microfilaments on signaling by the receptor with high-affinity for IgE. Mol Immunol 41:817–829PubMedCrossRefGoogle Scholar
  99. Tseng SY, Waite JC, Liu M, Vardhana S, Dustin ML (2008) T cell-dendritic cell immunological synapses contain TCR-dependent CD28-CD80 clusters that recruit protein kinase Ctheta. J Immunol 181:4852–4863PubMedGoogle Scholar
  100. Van Der Merwe PA, Davis SJ (2003) Molecular interactions mediating T cell antigen recognition. Annu Rev Immunol 21:659–684PubMedCrossRefGoogle Scholar
  101. van der Merwe PA, Barclay AN, Mason DW, Davies EA, Morgan BP, Tone M, Krishnam AKC, Ianelli C, Davis SJ (1994) Human cell-adhesion molecule CD2 binds CD58 (LFA-3) with a very low affinity and an extremely fast dissociation rate but does not bind CD48 or CD59. Biochemistry 33:10149–10160PubMedCrossRefGoogle Scholar
  102. Varma R, Campi G, Yokosuka T, Saito T, Dustin ML (2006) T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25:117–127PubMedCrossRefGoogle Scholar
  103. Watts TH, McConnell HM (1986) High-affinity fluorescent peptide binding to I-Ad in lipid membranes. Proc Natl Acad Sci USA 83:9660–9664PubMedCrossRefGoogle Scholar
  104. Watts TH, Gaub HE, McConnell HM (1986) T-cell-mediated association of peptide antigen and major histocompatibility complex protein detected by energy transfer in an evanescent wave-field. Nature 320:179–181PubMedCrossRefGoogle Scholar
  105. Weikl TR, Lipowsky R (2004) Pattern formation during T-cell adhesion. Biophys J 87:3665–3678PubMedCrossRefGoogle Scholar
  106. Weis RM, Balakrishnan K, Smith BA, McConnell HM (1982) Stimulation of fluorescence in a small contact region between rat basophil leukemia cells and planar lipid membrane targets by coherent evanescent radiation. J Biol Chem 257:6440–6445PubMedGoogle Scholar
  107. Wherry EJ, Ahmed R (2004) Memory CD8 T-cell differentiation during viral infection. J Virol 78:5535–5545PubMedCrossRefGoogle Scholar
  108. Wild MK, Cambiaggi A, Brown MH, Davies EA, Ohno H, Saito T, van der Merwe PA (1999) Dependence of T cell antigen recognition on the dimensions of an accessory receptor-ligand complex. J Exp Med 190:31–41PubMedCrossRefGoogle Scholar
  109. Woolf E, Grigorova I, Sagiv A, Grabovsky V, Feigelson SW, Shulman Z, Hartmann T, Sixt M, Cyster JG, Alon R (2007) Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nat Immunol 8:1076–1085PubMedCrossRefGoogle Scholar
  110. Wu J, Fang Y, Zarnitsyna VI, Tolentino TP, Dustin ML, Zhu C (2008) A coupled diffusion-kinetics model for analysis of contact-area FRAP experiment. Biophys J 95:910–919PubMedCrossRefGoogle Scholar
  111. Wülfing C, Davis MM (1998) A Receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282:2266–2269PubMedCrossRefGoogle Scholar
  112. Xu C, Gagnon E, Call ME, Schnell JR, Schwieters CD, Carman CV, Chou JJ, Wucherpfennig KW (2008) Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 135:702–713PubMedCrossRefGoogle Scholar
  113. Yokosuka T, Sakata-Sogawa K, Kobayashi W, Hiroshima M, Hashimoto-Tane A, Tokunaga M, Dustin ML, Saito T (2005) Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol 6:1253–1262PubMedCrossRefGoogle Scholar
  114. Yokosuka T, Kobayashi W, Sakata-Sogawa K, Takamatsu M, Hashimoto-Tane A, Dustin ML, Tokunaga M, Saito T (2008) Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Immunity 29:589–601PubMedCrossRefGoogle Scholar
  115. Zhang F, Marcus WD, Goyal NH, Selvaraj P, Springer TA, Zhu C (2005) Two-dimensional kinetics regulation of alphaLbeta2-ICAM-1 interaction by conformational changes of the alphaL-inserted domain. J Biol Chem 280:42207–42218PubMedCrossRefGoogle Scholar
  116. Zhu DM, Dustin ML, Cairo CW, Thatte HS, Golan DE (2006) Mechanisms of cellular avidity regulation in CD2-CD58-mediated T cell adhesion. ACS Chem Biol 1:649–658PubMedCrossRefGoogle Scholar
  117. Zhu DM, Dustin ML, Cairo CW, Golan DE (2007) Analysis of two-dimensional dissociation constant of laterally mobile cell adhesion molecules. Biophys J 92:1022–1034PubMedCrossRefGoogle Scholar
  118. Zhu J, Luo BH, Xiao T, Zhang C, Nishida N, Springer TA (2008) Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol Cell 32:849–861PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Helen L. and Martin S. Kimmel Center for Biology and Medicine in the Skirball Institute for Biomolecular Medicine and Department of PathologyNYU School of MedicineNew YorkUSA

Personalised recommendations